• Title/Summary/Keyword: road operation

Search Result 668, Processing Time 0.035 seconds

Study on the Operational Test Scenarios for Assessment of Unmanned Ground Vehicle's Operation Suitability (UGV의 운용적합성 평가를 위한 운용 시험 시나리오 연구)

  • Gyumin Kang;Kyungsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.6-15
    • /
    • 2023
  • This paper develops scenarios to evaluate the safety performance of Unmanned Ground Vehicle on military circumstances. The scenarios were created using Pegasus Project 6-layer format. These scenarios consist of straight road, curved road, merging road and crossroad. We adapt these scenarios to unpaved road. The characteristics of unpaved roads were divided into roughness, friction coefficient and road frequency. This adaption is validated via computer simulation. We observe the scan lines of vehicle become tangled of the straight road that make the cognitive abilities of the vehicle low and the lane-keeping is unable when vehicles entering curved off-roads over 40 km/h. The developed scenarios will contribute to enhancing stability from the perspective of introducing autonomous driving technology to Korean military.

The Performance Evaluation for the Rail Road Train Spring (철도차량용 스프링의 On-Line 성능 평가 방법 연구)

  • 백수곤;박종범;김상봉;하승우;서승후
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.178-185
    • /
    • 2001
  • So many springs in the rail road trains have been degeaded by the long time operation. Specially vibrations makes worse the condition of the springs. The performance evaluation technique for the rail road spring was developed. Using integrated handy tools using hydraulic systems, LVDT, and related software, On-line evaluation is possible to check the system integrity.

  • PDF

SIMULATOR-BASED HUMAN FACTORS EVALUATION OF AUTOMATED HIGHWAY SYSTEM

  • Cha, D.W.;Park, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.625-635
    • /
    • 2006
  • From a viewpoint of human factors, automated highway systems(AHS) can be defined as one of the newly developing human-machine systems that consist of humans(drivers and operators), machines(vehicles and facilities), and environments(roads and roadside environments). AHS will require a changed vehicle control process and driver-vehicle interface(DVI) comparing with conventional driving. This study introduces a fixed-based AHS simulator and provides questionnaire-based human factors evaluation results after three kinds of automated driving speed experiences in terms of road configuration, operation policies, information devices, and overall AHS use. In the simulator, the "shared space-at-grade" concept-based road configuration was virtually implemented on a portion of the Kyungbu highway in Korea, and heads-up display(HUD), AHS information display, and variable message signs(VMS) were installed for appropriate AHS DVI implementation. As the results, the subjects expressed positive opinions on the implemented road configuration, operation policies, and the overall use of AHS. The results of this study would be helpful in developing the road configuration and DVI design guideline as the basic human factors research for the future implementation of AHS.

Road Surface Marking Detection for Sensor Fusion-based Positioning System (센서 융합 기반 정밀 측위를 위한 노면 표시 검출)

  • Kim, Dongsuk;Jung, Hogi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.107-116
    • /
    • 2014
  • This paper presents camera-based road surface marking detection methods suited to sensor fusion-based positioning system that consists of low-cost GPS (Global Positioning System), INS (Inertial Navigation System), EDM (Extended Digital Map), and vision system. The proposed vision system consists of two parts: lane marking detection and RSM (Road Surface Marking) detection. The lane marking detection provides ROIs (Region of Interest) that are highly likely to contain RSM. The RSM detection generates candidates in the regions and classifies their types. The proposed system focuses on detecting RSM without false detections and performing real time operation. In order to ensure real time operation, the gating varies for lane marking detection and changes detection methods according to the FSM (Finite State Machine) about the driving situation. Also, a single template matching is used to extract features for both lane marking detection and RSM detection, and it is efficiently implemented by horizontal integral image. Further, multiple step verification is performed to minimize false detections.

A NUMERICAL STUDY OF THE VENTILATION AND FIRE SIMULATION IN A ROAD TUNNEL (도로터널 환기/제연 시스템 시뮬레이션)

  • Park Jong-Tack;Won Chan-Shik;Hur Nahmkeon;Cha Cheol-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.207-212
    • /
    • 2005
  • In designing a ventilation system of a road tunnel, a possibility of using the system as a smoke control system in case of a tunnel fire has to be considered. In the present study, a numerical simulation on ventilation system is performed considering jet fan operations and moving traffic. A fire-mode operation by reversing some fan operations in case of a tunnel fire is also simulated. The results show that ventilation operation can control the pollutants effectively, and fire-mode operation can control smoke and temperature effectively to prevent a disaster.

  • PDF

Dynamic Charncteristics for Laternl Strong Wind on Bimodal Tram (바이모달 트램의 횡풍에 대한 동적특성 해석)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Kim, Myoung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.979-983
    • /
    • 2008
  • A bi-modal tram can travel in not only dedicated way but also road so as to reduce construction costs and increase vehicle operation efficiency, whose passenger capacity is 2,500 to 7,000 persons/direction/hour. A bi-modal has an electronic guidance system that knows the location and route of the vehicle, and uses magnetic markers in the road surface for reference. Since a bi-modal tram will be operated in the downtown area, there is some possibility that strong wind occurred between high-rise buildings can produce sudden lateral movement (displacement) of the vehicle to influence its automatic operation controlled by electronic guidance system. For bi-modal tram in the automatic operation mode, lateral movements occurred by strong wind were calculated and analyzed in the dynamic model developed by using the ADAMS. Some useful relations among vehicle speeds, wind speeds, and lateral behaviors were discussed in this paper.

  • PDF

An Optimal Route Algorithm for Automated Vehicle in Monitoring Road Infrastructure (도로 인프라 모니터링을 위한 자율주행 차량 최적경로 알고리즘)

  • Kyuok Kim;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.265-275
    • /
    • 2023
  • The purpose of this paper is to devise an optimal route allocation algorithm for automated vehicle(AV) in monitoring quality of road infrastructure to support the road safety. The tasks of an AV in this paper include visiting node-links at least once during its operation and checking status of road infrastructure, and coming back to its depot.. In selecting optimal route, its priority goal is visiting the node-links with higher risks while reducing costs caused by operation. To deal with the problem, authors devised reward maximizing algorithm for AVs. To check its validity, the authors developed simple toy network that mimic node-link networks and assigned costs and rewards for each node-link. With the toy network, the reward maximizing algorithm worked well as it visited the node-link with higher risks earlier then chinese postman route algorithm (Eiselt, Gendreau, Laporte, 1995). For further research, the reward maximizing algorithm should be tested its validity in a more complex network that mimic the real-life.

Development of Profilometer for Profile Measurement and Severity Analysis of Unpaved Test Courses (비포장 시험로의 노면 굴곡 측정 및 가혹도 분석을 위한 노면굴곡측정장비 개발)

  • Yang, Jin-Saeng;Goo, Sang-Hwa;Bae, Cheol-Hoon;Lee, Sang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.37-46
    • /
    • 2007
  • The vibration environment essentially companied by vehicle operation on the ground is determined by the shape of road surface, which is called profile. This paper focuses on development of a profile and severity measurement system for unpaved test courses. In general, the profile and severity of unpaved road is an important issue in the reliability of endurance test. In order to measure unpaved road profile and severity, it is necessary to develop a profilometer system. The developed profilometer system is composed of data processing computer, power unit, air compressor and sensors(encoder, vertical gyro and laser displacement) This paper presents the measuring system configuration, measurement principle of road profile and analysis method of road characteristics used at CPG(Changwon Proving Ground) for this purpose.

Analysis of Transportation Vibration for Truck-Mounted Special Equipments via FEM and Experiments (유한요소법 및 실험을 이용한 트럭 탑재 특수 장비의 주행진동 해석)

  • Song, Oh-Seop;Lee, Hak-Yeol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1083-1091
    • /
    • 2009
  • Modern military equipments are tend to be mounted on a movable truck for their survivability and operation performance. Special units and electronic equipments installed on the truck experience the vibration caused by road roughness during their transport. The level of the transportation vibration is affected by both road conditions and vehicle speeds. In this paper, various experiments on the vibration characteristics of the equipment are carried out via road tests. Transportation vibration is also investigated by numerical analysis using FEM, and natural frequencies and random responses of the launcher are obtained. The PSD and RMS values of acceleration of the equipment are predicted and compared with test results.

Influence Analysis of Deep Excavation on the Nearby Undercrossing Road by Centrifuge Model Test

  • Huang, Hongwei;Xie, Xiongyao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.395-406
    • /
    • 2008
  • An excavation with the depth of 32.7m will be constructed as a ventilation shaft in Shanghai metro Line 9. The excavation induced effect on a nearby undercrossing road in operation must be properly evaluated. A centrifuge model test was conducted to study the impact of deep excavation on this existing undercrossing. Detail simulation works are described in this paper. The excavation steps could be simulated in the no-stop state of centrifuge machine. And induced settlements of the undercrossing road in both parallel and vertical directions were analyzed. Protective partition cement soil piles were also simulated in the tests. Simulation test shows deep excavation has a great influence on undercrossing road and the partition pile can obviously deduce the influence.

  • PDF