• Title/Summary/Keyword: road image

Search Result 736, Processing Time 0.027 seconds

The study for image recognition of unpaved road direction for endurance test vehicles using artificial neural network (내구시험의 무인 주행화를 위한 비포장 주행 환경 자동 인식에 관한 연구)

  • Lee, Sang Ho;Lee, Jeong Hwan;Goo, Sang Hwa
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, an algorithm is presented to recognize road based on unpaved test courses image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, gray level slicing, masking and identification of unpaved test courses. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing unpaved road. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning or assistance system.

  • PDF

The DLI-Based Image Processing Algorithm for Preceding Vehicle Detection

  • Hwang, Hee-Jung;Baek, Kwang-Ryul;Yi, Un-Kun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1416-1418
    • /
    • 2004
  • This paper proposes an image processing algorithm for detecting obstacles on road-lane using DLI(disparity of lane-related information) that is generated by stereo images acquired from dual cameras mounted on a moving vehicle. The DLI is a disparity that is acquired using single lane information from road lane detection. For the purpose to reduce processing time, we use small blocks obtained by edge-histogram based blocking logic. This algorithm detects moving objects such as preceding vehicles and obstacles. The proposed algorithm has been implemented in a personal computer with the road image data of a typical highway. We successfully performed experiments under a wide variety of road conditions without changing parameter values or adding human intervention. Experimental results also showed that the proposed DLI is quite successful.

  • PDF

Stereo Image Processing Algorithm to Preceding Vehicle Detection Based on DLI (차선변이 함수 기반의 선행차량 인식 알고리즘)

  • 황희정;백광렬;이운근
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.509-516
    • /
    • 2004
  • This paper proposes an image processing algorithm for detecting obstacles on road using DLI(disparity of lane-related information) that is generated by stereo images acquired from dual cameras mounted on a moving vehicle. The DLI is a disparity that is acquired using a single lane information from road lane detection. For the purpose to reduce processing time, we use small block of edge-histogram based blocking logic. This algorithm detects moving objects such as preceding vehicles and obstacles. The proposed algorithm has been implemented in a personal computer with the road image data of a typical highway. We successfully performed experiments under a wide variety of road conditions without changing parameter values or adding human intervention. Experimental results also showed that the proposed DLI is quite successful.

Automatic Generation Method of Road Data based on Spatial Information (공간정보에 기반한 도로 데이터 자동생성 방법)

  • Joo, In-Hak;Choi, Kyoung-Ho;Yoo, Jae-Jun;Hwang, Tae-Hyun;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-64
    • /
    • 2002
  • VEfficient generation of road data is one of the most important issues in GIS (Geographic Information System). In this paper, we propose a hybrid approach for automatic generation of road data by combining mobile mapping and image processing techniques. Mobile mapping systems have a form of vehicle equipped with CCD camera, GPS, and INS. They can calculate absolute position of objects that appear in acquired image by photogrammetry, but it is labor-intensive and time-consuming. Automatic road detection methods have been studied also by image processing technology. However, the methods are likely to fail because of obstacles and exceptive conditions in the real world. To overcome the problems, we suggest a hybrid method for automatic road generation, by exploiting both GPS/INS data acquired by mobile mapping system and image processing algorithms. We design an estimator to estimate 3-D coordinates of road line and corresponding location in an image. The estimation process reduces complicated image processing operations that find road line. The missing coordinates of road line due to failure of estimation are obtained by cubic spline interpolation. The interpolation is done piecewise, separated by rapid change such as road intersection. We present experimental results of the suggested estimation and interpolation methods with image sequences acquired by mobile mapping system, and show that the methods are effective in generation of road data.

  • PDF

Road Sign Recognition and Geo-content Creation Schemes for Utilizing Road Sign Information (도로표지 정보 활용을 위한 도로표지 인식 및 지오콘텐츠 생성 기법)

  • Seung, Teak-Young;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.252-263
    • /
    • 2016
  • Road sign is an important street furniture that gives some information such as road conditions, driving direction and condition for a driver. Thus, road sign is a major target of image recognition for self-driving car, ADAS(autonomous vehicle and intelligent driver assistance systems), and ITS(intelligent transport systems). In this paper, an enhanced road sign recognition system is proposed for MMS(Mobile Mapping System) using the single camera and GPS. For the proposed system, first, a road sign recognition scheme is proposed. this scheme is composed of detection and classification step. In the detection step, object candidate regions are extracted in image frames using hybrid road sign detection scheme that is based on color and shape features of road signs. And, in the classification step, the area of candidate regions and road sign template are compared. Second, a Geo-marking scheme for geo-content that is consist of road sign image and coordinate value is proposed. If the serious situation such as car accident is happened, this scheme can protect geographical information of road sign against illegal users. By experiments with test video set, in the three parts that are road sign recognition, coordinate value estimation and geo-marking, it is confirmed that proposed schemes can be used for MMS in commercial area.

Geometrical Reorientation of Distorted Road Sign using Projection Transformation for Road Sign Recognition (도로표지판 인식을 위한 사영 변환을 이용한 왜곡된 표지판의 기하교정)

  • Lim, Hee-Chul;Deb, Kaushik;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1088-1095
    • /
    • 2009
  • In this paper, we describe the reorientation method of distorted road sign by using projection transformation for improving recognition rate of road sign. RSR (Road Sign Recognition) is one of the most important topics for implementing driver assistance in intelligent transportation systems using pattern recognition and vision technology. The RS (Road Sign) includes direction of road or place name, and intersection for obtaining the road information. We acquire input images from mounted camera on vehicle. However, the road signs are often appeared with rotation, skew, and distortion by perspective camera. In order to obtain the correct road sign overcoming these problems, projection transformation is used to transform from 4 points of image coordinate to 4 points of world coordinate. The 4 vertices points are obtained using the trajectory as the distance from the mass center to the boundary of the object. Then, the candidate areas of road sign are transformed from distorted image by using homography transformation matrix. Internal information of reoriented road signs is segmented with arrow and the corresponding indicated place name. Arrow area is the largest labeled one. Also, the number of group of place names equals to that of arrow heads. Characters of the road sign are segmented by using vertical and horizontal histograms, and each character is recognized by using SAD (Sum of Absolute Difference). From the experiments, the proposed method has shown the higher recognition results than the image without reorientation.

Speed and Steering Control of Autonomous Vehicle Using Neural Network (신경회로망을 이용한 자율주행차량의 속도 및 조향제어)

  • 임영철;류영재;김의선;김태곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.274-281
    • /
    • 1998
  • This paper describes a visual control of autonomous vehicle using neural network. Visual control for road-following of autonomous vehicle is based on road image from camera. Road points on image are inputs of controller and vehicle speed and steering angle are outputs of controller using neural network. Simulation study confirmed the visual control of road-following using neural network. For experimental test, autonomous electric vehicle is designed and driving test is realized

  • PDF

Night-to-Day Road Image Translation with Generative Adversarial Network for Driver Safety Enhancement (운전자 안정성 향상을 위한 Generative Adversarial Network 기반의 야간 도로 영상 변환 시스템)

  • Ahn, Namhyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.760-767
    • /
    • 2018
  • Advanced driver assistance system(ADAS) is a major technique in the intelligent vehicle field. The techniques for ADAS can be separated in two classes, i.e., methods that directly control the movement of vehicle and that indirectly provide convenience to driver. In this paper, we propose a novel system that gives a visual assistance to driver by translating a night road image to a day road image. We use the black box images capturing the front road view of vehicle as inputs. The black box images are cropped into three parts and simultaneously translated into day images by the proposed image translation module. Then, the translated images are recollected to original size. The experimental result shows that the proposed method generates realistic images and outperforms the conventional algorithms.

Implementation of Image Transmission Based on Vehicle-to-Vehicle Communication

  • Piao, Changhao;Ding, Xiaoyue;He, Jia;Jang, Soohyun;Liu, Mingjie
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.258-267
    • /
    • 2022
  • Weak over-the-horizon perception and blind spot are the main problems in intelligent connected vehicles (ICVs). In this paper, a V2V image transmission-based road condition warning method is proposed to solve them. The encoded road emergency images which are collected by the ICV are transmitted to the on-board unit (OBU) through Ethernet. The OBU broadcasts the fragmented image information including location and clock of the vehicle to other OBUs. To satisfy the channel quality of the V2X communication in different times, the optimal fragment length is selected by the OBU to process the image information. Then, according to the position and clock information of the remote vehicles, OBU of the receiver selects valid messages to decode the image information which will help the receiver to extend the perceptual field. The experimental results show that our method has an average packet loss rate of 0.5%. The transmission delay is about 51.59 ms in low-speed driving scenarios, which can provide drivers with timely and reliable warnings of the road conditions.

A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal (그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구)

  • Yun Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • High-resolution aerial color image offers great possibilities for geometric and semantic information for spatial data generation. However, shadow casts by buildings and trees in high-density urban areas obscure much of the information in the image giving rise to potentially inaccurate classification and inexact feature extraction. Though many researches have been implemented for solving shadow casts, few studies have been carried out about the extraction of features hindered by shadows from aerial color images in urban areas. This paper presents a asphalt road boundary extraction technique that combines information from aerial color image and LIDAR (LIght Detection And Ranging) data. The following steps have been performed to remove shadow effects and to extract road boundary from the image. First, the shadow regions of the aerial color image are precisely located using LEAR DSM (Digital Surface Model) and solar positions. Second, shadow regions assumed as road are corrected by shadow path reconstruction algorithms. After that, asphalt road boundary extraction is implemented by segmentation and edge detection. Finally, asphalt road boundary lines are extracted as vector data by vectorization technique. The experimental results showed that this approach was effective and great potential advantages.