• Title/Summary/Keyword: road image

Search Result 736, Processing Time 0.031 seconds

An User-Friendly Method of Image Warping for Traffic Monitoring System (실시간 교통상황 모니터링 시스템을 위한 유저 친화적인 영상 변형 방법)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.231-236
    • /
    • 2016
  • Currently, a traffic monitoring service using a surveillance camera is provided through internet. In general, if the user points a certain location on a map, then this service shows the real-time image of the camera where it is mounted. In this paper, we proposed the intuitive surveillance monitoring system which displays a real-time camera image on the map by warping with bird's-eye view and with the top of image as the north. In order to robustly estimate the road plane using camera image, we used the motion vectors which can be detected to changes in brightness. We applied a re-adjustment process to have the same directivity with a map and presented a user-friendly interface that can be displayed on the map. In the experiment, the proposed method was presented as the result of warping image that the user can easily perceive like a map.

A Development of Façade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling (딥러닝 기반 이미지 자동 레이블링을 활용한 건축물 파사드 데이터세트 구축 기술 개발)

  • Gu, Hyeong-Mo;Seo, Ji-Hyo;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.12
    • /
    • pp.43-53
    • /
    • 2019
  • The construction industry has made great strides in the past decades by utilizing computer programs including CAD. However, compared to other manufacturing sectors, labor productivity is low due to the high proportion of workers' knowledge-based task in addition to simple repetitive task. Therefore, the knowledge-based task efficiency of workers should be improved by recognizing the visual information of computers. A computer needs a lot of training data, such as the ImageNet project, to recognize visual information. This study, aim at proposing building facade datasets that is efficiently constructed by quickly collecting building facade data through portal site road view and automatically labeling using deep learning as part of construction of image dataset for visual recognition construction by the computer. As a method proposed in this study, we constructed a dataset for a part of Dongseong-ro, Daegu Metropolitan City and analyzed the utility and reliability of the dataset. Through this, it was confirmed that the computer could extract the significant facade information of the portal site road view by recognizing the visual information of the building facade image. Additionally, In contribution to verifying the feasibility of building construction image datasets. this study suggests the possibility of securing quantitative and qualitative facade design knowledge by extracting the facade design knowledge from any facade all over the world.

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

An Algorithm for Collecting Traffic Information by Vehicle Tracking Method from CCTV Camera Images on the Highway (고속도로변 폐쇄회로 카메라 영상에서 트래킹에 의한 교통정보수집 알고리즘)

  • Lee In Jung;Min Joan Young;Jang Young Sang
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 2004
  • There are many inductive loop detectors under the highways in Korea. Among the other detectors, some are image detectors. Almost all image detectors are focused one or two lane of the road and are measuring traffic information. This paper proposes to an algorithm for detecting traffic information automatically from CCTV camera images installed on the highway. The information which is counted in one lane or two contains some critical errors by occlusion frequently in case of passing larger vehicles. In this paper, we use a tracking algorithm in which the detection area include all lanes, then the traffic informations are collected from the vehicles individually using difference images in this detection area. This tracking algorithm is better than lane by lane detecting algorithm. The experiment have been conducted two different real road scenes for 20 minutes. For the experiments, the images are provided with CCTV camera which was installed at Kiheung Interchange upstream of Kyongbu highway, and video recording images at Chungkye Tunnel. For image processing, images captured by frame-grabber board 30 frames per second, 640${\times}$480 pixels resolution and 256 gray-levels to reduce the total amount of data to be Interpreted.

  • PDF

A Study of Selecting Sequential Viewpoint and Examining the Effectiveness of Omni-directional Angle Image Information in Grasping the Characteristics of Landscape (경관 특성 파악에 있어서의 시퀀스적 시점장 선정과 전방위 화상정보의 유효성 검증에 관한 연구)

  • Kim, Heung Man;Lee, In Hee
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Relating to grasping sequential landscape characteristics in consideration of the behavioral characteristics of the subject experiencing visual perception, this study was made on the subject of main walking line section for visitors of three treasures of Buddhist temples. Especially, as a method of obtaining data for grasping sequential visual perception landscape, the researcher employed [momentum sequential viewpoint setup] according to [the interval of pointers arbitrarily] and fisheye-lens-camera photography using the obtained omni-directional angle visual perception information. As a result, in terms of viewpoint selection, factors like approach road form, change in circulation axis, change in the ground surface level, appearance of objects, etc. were verified to make effect, and among these, approach road form and circulation axis change turned out to be the greatest influences. In addition, as a result of reviewing the effectiveness via the subjects, for the sake of qualitative evaluation of landscape components using the VR picture image obtained in the process of acquiring omni-directional angle visual perception information, a positive result over certain values was earned in terms of panoramic vision, scene reproduction, three-dimensional perspective, etc. This convinces us of the possibility to activate the qualitative evaluation of omni-directional angle picture information and the study of landscape through it henceforth.

Development of Patrol Robot using DGPS and Curb Detection (DGPS와 연석추출을 이용한 순찰용 로봇의 개발)

  • Kim, Seung-Hun;Kim, Moon-June;Kang, Sung-Chul;Hong, Suk-Kyo;Roh, Chi-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2007
  • This paper demonstrates the development of a mobile robot for patrol. We fuse differential GPS, angle sensor and odometry data using the framework of extended Kalman filter to localize a mobile robot in outdoor environments. An important feature of road environment is the existence of curbs. So, we also propose an algorithm to find out the position of curbs from laser range finder data using Hough transform. The mobile robot builds the map of the curbs of roads and the map is used fur tracking and localization. The patrol robot system consists of a mobile robot and a control station. The mobile robot sends the image data from a camera to the control station. The remote control station receives and displays the image data. Also, the patrol robot system can be used in two modes, teleoperated or autonomous. In teleoperated mode, the teleoperator commands the mobile robot based on the image data. On the other hand, in autonomous mode, the mobile robot has to autonomously track the predefined waypoints. So, we have designed a path tracking controller to track the path. We have been able to confirm that the proposed algorithms show proper performances in outdoor environment through experiments in the road.

An Efficient Lane Detection Based on the Optimized Hough Transform (최적화된 Hough 변환에 근거한 효율적인 차선 인식)

  • Park Jae-Hyeon;Lee Hack-Man;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.406-412
    • /
    • 2006
  • In this paper, we propose OHT(optimized nough Transform) algorithm for the lane extraction. Input image is changed into 256 gray revel image. Gray level image is separated into background region and road region by using limited horizontal projection value. In separated road area, we apply OHT algorithm. OHT algorithm is characterized as follows. First, the number of candidate pixels is reduced using the outline orientation of the lane. Second, each range of the left and right lane is defined by limited ${\theta}$ Experimental results show that the proposed method is better than Hough Transform.

The Method of Vanishing Point Estimation in Natural Environment using RANSAC (RANSAC을 이용한 실외 도로 환경의 소실점 예측 방법)

  • Weon, Sun-Hee;Joo, Sung-Il;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.53-62
    • /
    • 2013
  • This paper proposes a method of automatically predicting the vanishing point for the purpose of detecting the road region from natural images. The proposed method stably detects the vanishing point in the road environment by analyzing the dominant orientation of the image and predicting the vanishing point to be at the position where the feature components of the image are concentrated. For this purpose, in the first stage, the image is partitioned into sub-blocks, an edge sample is selected randomly from within the sub-block, and RANSAC is applied for line fitting in order to analyze the dominant orientation of each sub-block. Once the dominant orientation has been detected for all blocks, we proceed to the second stage and randomly select line samples and apply RANSAC to perform the fitting of the intersection point, then measure the cost of the intersection model arising from each line and we predict the vanishing point to be located at the average point, based on the intersection point model with the highest cost. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for detecting the vanishing point.

A Reproduction algorithm of nighttime road-image for visibility evaluation of headlamps (헤드램프의 시계성 평가를 위한 야간도로 영상 재현 알고리즘)

  • Lee, Cheol-Hui;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.630-639
    • /
    • 2001
  • This study proposes a new calculation method for generating real nighttime lamp-lit images. In order to improve the color appearance in the prediction of a nighttime lamp-lighted scene, the lamp-lit image is synthesized based on spectral distribution using the estimated local spectral distribution of the headlamps and the surface reflectance of every object. The Principal component analysis method is introduced to estimate the surface color of an object, and the local spectral distribution of the headlamps is calculated based on the illuminance data and spectral distribution of the illuminating headlamps. HID and halogen lamps are utilized to create beam patterns and captured road scenes are used as background images to simulate actual headlamp-lit images on a monitor. As a result, the reproduced images presented a color appearance that was very close to a real nighttime road image illuminated by single and multiple headlamps compared to the conventional graphic-based algorithm.

  • PDF