• Title/Summary/Keyword: road features

Search Result 303, Processing Time 0.03 seconds

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF

A Study on 3D Road Extraction From Three Linear Scanner

  • Yun, SHI;SHIBASAKI, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.301-303
    • /
    • 2003
  • The extraction of 3D road network from high-resolution aerial images is still one of the current challenges in digital photogrammetry and computer vision. For many years, there are many researcher groups working for this task, but unt il now, there are no papers for doing this with TLS (Three linear scanner), which has been developed for the past several years, and has very high-resolution (about 3 cm in ground resolution). In this paper, we present a methodology of road extraction from high-resolution digital imagery taken over urban areas using this modern photogrammetry’s scanner (TLS). The key features of the approach are: (1) Because of high resolution of TLS image, our extraction method is especially designed for constructing 3D road map for next -generation digital navigation map; (2) for extracting road, we use the global context of the intensity variations associated with different features of road (i.e. zebra line and center line), prior to any local edge. So extraction can become comparatively easy, because we can use different special edge detector according different features. The results achieved with our approach show that it is possible and economic to extract 3D road data from Three Linear Scanner to construct next -generation digital navigation road map.

  • PDF

Real Time On-Road Vehicle Detection with Low-Level Visual Features and Boosted Cascade of Haar-Like Features (미약한 시각 특징과 Haar 유사 특징들의 강화 연결에 의한 도로 상의 실 시간 차량 검출)

  • Adhikari, Shyam Prasad;Yoo, Hyeon-Joong;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • This paper presents a real- time detection of on-road succeeding vehicles based on low level edge features and a boosted cascade of Haar-like features. At first, the candidate vehicle location in an image is found by low level horizontal edge and symmetry characteristic of vehicle. Then a boosted cascade of the Haar-like features is applied to the initial hypothesized vehicle location to extract the refined vehicle location. The initial hypothesis generation using simple edge features speeds up the whole detection process and the application of a trained cascade on the hypothesized location increases the accuracy of the detection process. Experimental results on real world road scenario with processing speed of up to 27 frames per second for $720{\times}480$ pixel images are presented.

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

Day and night license plate detection using tail-light color and image features of license plate in driving road images

  • Kim, Lok-Young;Choi, Yeong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2015
  • In this paper, we propose a license plate detection method of running cars in various road images. The proposed method first classifies the road image into day and night images to improve detection accuracy, and then the tail-light regions are detected by finding red color areas in RGB color space. The candidate regions of the license plate areas are detected by using symmetrical property, size, width and variance of the tail-light regions, and to find the license plate areas of the various sizes the morphological operations with adaptive size structuring elements are applied. Finally, the plate area is verified and confirmed with the geometrical and image features of the license plate areas. The proposed method was tested with the various road images and the detection rates (precisions) of 84.2% of day images and 87.4% of night images were achieved.

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.

The Study on the Improvement of Principle in Determining Road Boundary Used by Geographical Features (지형지물을 이용한 도로경계 설정 원칙의 개선 방안)

  • Jeon, Yeong-Gil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.93-105
    • /
    • 2016
  • Among 28 land Categories, 'road' is that most frequently established or transformed. Like that of other 27 land categories, the boundary of road should be defined by boundary making principles and then fixed by cadastral laws. But, some criteria to determine the land boundary, especially in boundary making rule which can be used by geographical features, is confused partly in Land Use Planning stages. Because the purpose of making any rules in fixing road boundary may be misinterpreted, the gap between law and real land boundary can be occurred. Those related rules in determining the land boundary must be improved urgently. Cut surface' or 'slope' should be conformed as a legal term and I suggest that 'Structures' must be changed to 'geographical features'.

Detection of Road Features Using MAP Estimation Algorithm In Radar Images (MAP 추정 알고리즘에 의한 레이더 영상에서 도로검출)

  • 김순백;이수흠;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.62-65
    • /
    • 2003
  • We propose an algorithm for almost unsupervised detection of linear structures, in particular, axes in road network and river, as seen in synthetics aperture radar (SAR) images. The first is local step and used to extract linear features from the speckle radar image, which are treated as road segment candidates. We present two local line detectors as well as a method for fusing information from these detectors. The second is global step, we identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects.

  • PDF

Detection of Road Features Using MRF in Radar Images (MRF를 이용한 레이더 영상에서 도로검출)

  • 김순백;정래형;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.221-224
    • /
    • 2000
  • We propose an algorithm for almost unsupervised detection of linear structures, in particular, axes in road network and river, as seen in synthetics aperture radar (SAR) images. The first is local step and used to extract linear features from the speckle radar image, which are treated as road segment candidates. We present two local line detectors as well as a method for fusing information from these detectors. The second is global step, we identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects.

  • PDF

Exploring Optimal Threshold of RGB Pixel Values to Extract Road Features from Google Earth (Google Earth에서 도로 추출을 위한 RGB 화소값 최적구간 추적)

  • Park, Jae-Young;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.66-75
    • /
    • 2010
  • The authors argues that the current road updating system based on traditional aerial photograph or multi-spectral satellite image appears to be non-user friendly due to lack of the frequent cartographic representation for the new construction sites. Google Earth are currently being emerged as one of important places to extract road features since the RGB satellite image with high multi-temporal resolution can be accessed freely over large areas. This paper is primarily intended to evaluate optimal threshold of RGB pixel values to extract road features from Google Earth. An empirical study for five experimental sites was conducted to confirm how a RGB picture provided Google Earth can be used to extact the road feature. The results indicate that optimal threshold of RGB pixel values to extract road features was identified as 126, 125, 127 for manual operation which corresponds to 25%, 30%, 19%. Also, it was found that display scale difference of Google Earth was not very influential in tracking required RGB pixel value. As a result the 61cm resolution of Quickbird RGB data has shown the potential to realistically identified the major type of road feature by large scale spatial precision while the typical algorithm revealed successfully the area-wide optimal threshold of RGB pixel for road appeared in the study area.