• Title/Summary/Keyword: road extraction

Search Result 219, Processing Time 0.031 seconds

Road Map Data Compression Using Extraction of Characteristic (특징점 추출을 이용한 도로망 지도의 데이터 압축)

  • 도재수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.81-84
    • /
    • 2002
  • 최근, 사회의 요구의 다양성, 고도화에 동반하여 지도정보 시스템에 대한 수요가 증가하고 있다. 이 시스템을 구축할 때, 지도 중에서 각 선도형이 갖는 방대한 데이터를 어떻게 압축하여 시스템에 입력하여, 축적할까하는 것이 문제가 된다. 자동차의 네비게이션 등에 이용하는 도로지도에 한해서는, 도로의 접속관계만 유지된다면, 원래의 도로지도와 다소 차이가 있다고 하여도 충분히 유효하다. 본 연구에서는 이 네비게이션을 목적으로 한, 시가지의 도로망 지도에 대하여, 특징점 추출과 직선 근사를 이용한 데이터 압축법을 제안한다.

  • PDF

Extraction of 3D Road Centerline Using Video Camera (비디오 카메라를 이용한 3차원 도로중심선 추출)

  • 이종출;서동주;김성호;강윤성
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.543-550
    • /
    • 2004
  • 컴퓨터의 발전에 따라 현재 제4세대 수치사진측량의 활용도가 광범위하게 진행되고 있다. 특히 비디오동영상을 이용하여 실용적이며, 비전문가들도 활용할 수 있는 부분들이 증가하고 있다. 이러한 현시점에서 국가산업의 중추적인 시설물 도로분야에서 도로안전진단과 유지관리목적으로 도로정보획득 및 도로정보수집에 많은 연구를 하고 있다. 따라서, 본 연구에서는 실용성, 경제성이 있는 비전문가용인 디지털비디오 동영상을 이용하여 도로중심선의 3차원 위치정보를 추출하여 도로정보화사업의 기본적인 자료로 제공되리라 판단된다.

  • PDF

Exploratory Study of the Applicability of Kompsat 3/3A Satellite Pan-sharpened Imagery Using Semantic Segmentation Model (아리랑 3/3A호 위성 융합영상의 Semantic Segmentation을 통한 활용 가능성 탐색 연구)

  • Chae, Hanseong;Rhim, Heesoo;Lee, Jaegwan;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1889-1900
    • /
    • 2022
  • Roads are an essential factor in the physical functioning of modern society. The spatial information of the road has much longer update cycle than the traffic situation information, and it is necessary to generate the information faster and more accurately than now. In this study, as a way to achieve that goal, the Pan-sharpening technique was applied to satellite images of Kompsat 3 and 3A to improve spatial resolution. Then, the data were used for road extraction using the semantic segmentation technique, which has been actively researched recently. The acquired Kompsat 3/3A pan-sharpened images were trained by putting it into a U-Net based segmentation model along with Massachusetts road data, and the applicability of the images were evaluated. As a result of training and verification, it was found that the model prediction performance was maintained as long as certain conditions were maintained for the input image. Therefore, it is expected that the possibility of utilizing satellite images such as Kompsat satellite will be even higher if rich training data are constructed by applying a method that minimizes the impact of surrounding environmental conditions affecting models such as shadows and surface conditions.

Extraction of Road Information Based on High Resolution UAV Image Processing for Autonomous Driving Support (자율주행 지원을 위한 고해상도 무인항공 영상처리 기반의 도로정보 추출)

  • Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.355-360
    • /
    • 2017
  • Recently, with the development of autonomous vehicle technology, the importance of precise road maps is increasing. A precise road map is a digital map with lane information, regulations, safety information, and various road facilities. Conventional precise road maps have been tested and developed based on the mobile mapping system (MMS). But they have not been activated due to high introduction costs. However, in the case of unmanned aerial vehicles (UAVs), the application field is continuously increasing. This study tries to extract information through classification of high-resolution UAV images for autonomous driving. Autonomous vehicle test roads were selected as study sites, and high-resolution orthoimages were produced using UAVs. In addition, the utilization of high-resolution orthoimages has been proposed by effectively extracting data for precise road map construction, such as road lines, guards, and machines through image classification. If additional experimentation and verification are performed, the field of UAV image use will be expanded, providing the data to automobile manufacturers and related public and private organizations, and venture companies will contribute to the development of domestic autonomous vehicle technology.

A Road Feature Extraction and Obstacle Localization Based on Stereo Vision (스테레오 비전 기반의 도로 특징 정보 추출 및 장애 물체 검출)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.28-37
    • /
    • 2009
  • In this paper, we propose an obstacle localization method using a road feature based on a V-disparity map binarized by a maximum frequency value. In a conventional method, the detection performance is severely affected by the size, number and type of obstacles. It's especially difficult to extract a large obstacle or a continuous obstacle like a median strip. So we use a road feature as a new decision standard to localize obstacles irrespective of external environments. A road feature is proper to be a new decision standard because it keeps its rough feature very well in V-disparity under environments where many obstacles exist. And first of all, we create a binary V-disparity map using a maximum frequency value to extract a road feature easily. And then we compare the binary V-disparity map with a median value to remove noises. Finally, we use a linear interpolation for rows which have no value. Comparing this road feature with each column value in disparity map, we can localize obstacles robustly. We also propose a post-processing technique to remove noises made in obstacle localization stage. The results in real road tests show that the proposed algorithm has a better performance than a conventional method.

Driving Vehicle Detection and Distance Estimation using Vehicle Shadow (차량 그림자를 이용한 주행 차량 검출 및 차간 거리 측정)

  • Kim, Tae-Hee;Kang, Moon-Seol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1693-1700
    • /
    • 2012
  • Recently, the warning system to aid drivers for safe driving is being developed. The system estimates the distance between the driver's car and the car before it and informs him of safety distance. In this paper, we designed and implemented the collision warning system which detects the car in front on the actual road situation and measures the distance between the cars in order to detect the risk situation for collision and inform the driver of the risk of collision. First of all, using the forward-looking camera, it extracts the interest area corresponding to the road and the cars from the image photographed from the road. From the interest area, it extracts the object of the car in front through the analysis on the critical value of the shadow of the car in front and then alerts the driver about the risk of collision by calculating the distance from the car in front. Based on the results of detecting driving cars and measuring the distance between cars, the collision warning system was designed and realized. According to the result of applying it in the actual road situation and testing it, it showed very high accuracy; thus, it has been verified that it can cope with safe driving.

Extracting Method The New Roads by Using High-resolution Aerial Orthophotos (고해상도 항공정사영상을 이용한 신설 도로 추출 방법에 관한 연구)

  • Lee, Kyeong Min;Go, Shin Young;Kim, Kyeong Min;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.3-10
    • /
    • 2014
  • Digital maps are made by experts who digitize the data from aerial image and field survey. And the digital maps are updated every 2 years in National Geographic Information Institute. Conventional Digitizing methods take a lot of time and cost. And geographic information needs to be modified and updated appropriately as geographical features are changing rapidly. Therefore in this paper, we modify the digital map updates the road information for rapid high-resolution aerial orthophoto taken at different times were performed HSI color conversion. Road area of the cassification was performed the region growing methods. In addition, changes in the target area for analysis by applying the CVA technique to compare the changed road area by analyzing the accuracy of the proposed extraction.

Road Lane and Vehicle Distance Recognition using Real-time Analysis of Camera Images (카메라 영상의 실시간 분석에 의한 차선 및 차간 인식)

  • Kang, Moon-Seol;Kim, Yu-Sin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2665-2674
    • /
    • 2012
  • This paper propose the method to recognize the lanes and distance between cars in real-time which detects dangerous situations and helps safe driving in the actual road environment. First of all, it extracts the area of interest corresponding to roads and cars from the road image photographed by using the forward-looking camera. Through the hough transform for the area of interest, this study detects linear components and also selects the lane and conducts filtering by calculating probability. And through the shadow threshold analysis of the cars in front within the area of interest, it extracts the objects of cars in front and calculates the distance from cars in front. According to the result of applying the suggested technology to recognize the lane and distance between cars to the road situation for testing, it showed over 95% recognition rate; thus, it has been proved that it can respond to safe driving.

An Efficient Clustering Algorithm for Massive GPS Trajectory Data (대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링)

  • Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2016
  • Digital road map generation is primarily based on artificial satellite photographing or in-site manual survey work. Therefore, these map generation procedures require a lot of time and a large budget to create and update road maps. Consequently, people have tried to develop automated map generation systems using GPS trajectory data sets obtained by public vehicles. A fundamental problem in this road generation procedure involves the extraction of representative trajectory such as main roads. Extracting a representative trajectory requires the base data set of piecewise line segments(GPS-trajectories), which have close starting and ending points. So, geometrically similar trajectories are selected for clustering before extracting one representative trajectory from among them. This paper proposes a new divide- and-conquer approach by partitioning the whole map region into regular grid sub-spaces. We then try to find similar trajectories by sweeping. Also, we applied the $Fr{\acute{e}}chet$ distance measure to compute the similarity between a pair of trajectories. We conducted experiments using a set of real GPS data with more than 500 vehicle trajectories obtained from Gangnam-gu, Seoul. The experiment shows that our grid partitioning approach is fast and stable and can be used in real applications for vehicle trajectory clustering.

A Study on Automation about Painting the Letters to Road Surface

  • Lee, Kyong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • In this study, the researchers attempted to automate the process of painting the characters on the road surface, which is currently done by manual labor, by using the information and communication technology. Here are the descriptions of how we put in our efforts to achieve such a goal. First, we familiarized ourselves with the current regulations about painting letters or characters on the road, with reference to Road Mark Installation Management Manual of the National Police Agency. Regarding the graphemes, we adopted a new one using connection components, in Gothic print characters which was within the range of acceptance according to the aforementioned manual. We also made it possible for the automated program to recognize the graphemes by means of the feature dots of the isolated dots, end dots, 2-line gathering dots, and gathering dots of 3 lines or more. Regarding the database, we built graphemes database for plotting information, classified the characters by means of the arrangement information of the graphemes and the layers that the graphemes form within the characters, and last but not least, made the character shape information database for character plotting by using such data. We measured the layers and the arrangement information of the graphemes consisting the characters by using the information of: 1) the information of the position of the center of gravity, and 2) the information of the graphemes that was acquired through vertical exploration from the center of gravity in each grapheme. We identified and compared the group to which each character of the database belonged, and recognized the characters through the use of the information gathered using this method. We analyzed the input characters using the aforementioned analysis method and database, and then converted into plotting information. It was shown that the plotting was performed after the correction.