• Title/Summary/Keyword: road driving environment

Search Result 255, Processing Time 0.026 seconds

Operational Design Domain for Testing of Autonomous Shuttle on Arterial Road (도시부 자율주행셔틀 실증을 위한 운행설계영역 분석: 안양시를 중심으로)

  • Kim, Hyungjoo;Lim, Kyungil;Kim, Jaehwan;Son, Woongbee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The ongoing development of autonomous driving-related technology may cause different kinds of accidents while testing new changes. As a result, more information on ODD suitable for the domestic road environment will be necessary to prevent safety accidents. Besides, implementation of the Autonomous Vehicle Act will increase autonomous driving demonstrations on roads currently in use. This study describes an ODD for demonstrating an autonomous driving shuttle in downtown areas. It addresses a possible scenario of autonomous driving around a downtown road in Anyang. Geometric, operational, and environmental factors are considered while maintaining a domestic road environment and safety. Autonomous driving shuttles are demonstrated in 30 nodes, each identified by node type and signal-communication. Link criteria are an autonomous driving restriction in 42 morning peak (8-9am) hours, 39 non-peak (12-13pm) hours, and 40 afternoon peak (18-19pm) hours. In the future, conclusions may be considered for preliminary safety assessments of roads where autonomous driving tests are performed.

Local Path Plan for Unpaved Road in Rough Environment (야지환경의 비포장도로용 지역경로계획)

  • Lee, Young-Il;Choe, Tok Son;Park, Yong Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2013
  • It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.

Estimating On-road NOx Emissions of Euro 6 Light-duty Diesel Vehicles (Euro6 소형 경유자동차의 실제 도로 주행 NOx 배출량 평가)

  • Park, Yeon-Jae;Park, Junhong;Lee, Jai-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.207-213
    • /
    • 2016
  • To protect air pollution of urban area from motor vehicles, emission limits for diesel vehicles have been dramatically lowered in short period. But recent studies have shown that on-road NOx emissions of light-duty diesel vehicles are considerably higher than the values measured with laboratory test procedures used for emission certification. To tackle with this issue, Ministry of Environment have a plan to introduce EU RDE-LDV (Real-driving Emission-Light-duty Vehicle) regulation. In this study, 4 Euro 6 diesel vehicles have been tested with the new test procedures published by EU to estimate on-road NOx emissions using PEMS (Portable Emission Measurement System). The results have shown that the requirements of EU RDE-LDV could be met in driving condition of metropolitan area for constitution of test routes and validity of test results. In analysing with Moving Averaging Window method the completeness and normality of test data were validated with the requirement. On-road NOx emissions were quite deviated as test vehicles and higher than the new limit of on-road NOx emission enforced from Sept. 2017, which means that RDE-LDV can effectively reduce NOx emission of diesel vehicles in real driving conditions of Korea.

Development of Road Tunnel Ventilation System with Electrostatic Precipitator (도로터널용 전기집진시스템 개발)

  • Kim, Jong-Ryul;Weon, Jong-Oung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

Study on the Improvement Impaired Driving Environment of the IT Convergence-based Road Safety at Road Construction Sites with a Robot Protector (IT 융합기반 도로안전지킴이로봇을 통한 도로 건설 현장에서의 장애인운전환경 개선 연구)

  • Lee, S.Y.;Kim, D.O.;Rhee, K.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • There have been sustained developments of advanced technologies using traffic safety facilities recently and techniques for identifying failure modes and devices which could result in fatal outcomes. The purpose of this research is aimed at improving the driving conditions in advance through analyzing the IT convergence, driving education, researches for vehicles, field of construction and robotics. The researchers evaluate on usability tests of the driving with 26 candidates through focusing on safety, convenience, efficiency, effectiveness. Using specialized LED panel to enhance driving performances of disabled people are for cautious road conditions like foggy weather or heavy rain. As a result, there were improvements in the driving conditions, and candidates reported this system was helpful. It allows them for maintaining proper driving all times and was especially informative for people with low vision or visually impaired. This system plays a pivotal role as a prevention mechanism not only for regular drivers but also for further delict of traffic violations or accident offenders who already have former record on tort.

  • PDF

Cognitive Model-based Evaluation of Traffic Simulation Model (교통 시뮬레이션 모텔의 인지공학적 평가에 관한 연구)

  • 강명호;차우창
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • The road sign in dynamic traffic system is an important element which affects on human cognitive performance on driving. Web-based vision system simulator was developed to examine the cognition time of the road sign in dynamic environment. This experiment was designed in within-subject design with two factors; vehicle speed and the amount of information of the traffic sign. It measured the cognition time of the road sign through two evaluation methods; the subjective test with vision system simulator and computational cognitive model. In these two evaluations of human cognitive performance under the dynamic traffic environment, it demonstrated that subject's cognition time was affected by both the amount of information of traffic sign and driving speed.

  • PDF

Area Identification for Road Design (도로 설계 지역 구분)

  • Kim, Yong Seok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.181-189
    • /
    • 2014
  • PURPOSES : Ambiguous decision on whether rural or urban area for road design can increase the construction cost and restrict the land use of surrounding area. However, administrative classification on rural and urban area is not directly related to road design because of this classification is not based on the engineering viewpoint, so method which can explain the road design context is required. METHODS : Method which enables to identify the area for road design is suggested based on the deceleration expected to be experienced by drivers who use the road section concerned. Deceleration rate corresponding to the area such as rural or urban suggested in Road Design Guideline is used as the criteria to identify the area by comparing this value with the estimated deceleration rate at the road section concerned. Speed profile method is utilized to derive the deceleration rate, and speed estimation way for reflecting both road geometry and intersection is suggested using stopping sight distance concept. RESULTS : The procedure of the method application is suggested, and the design example utilizing the method is provided. CONCLUSIONS : The method is expected to be used to identify the area for road design with engineering viewpoint, and design consistency among the roads with similar driving environment can be made.

Study on Map Building Performance Using OSM in Virtual Environment for Application to Self-Driving Vehicle (가상환경에서 OSM을 활용한 자율주행 실증 맵 성능 연구)

  • MinHyeok Baek;Jinu Pahk;JungSeok Shim;SeongJeong Park;YongSeob Lim;GyeungHo Choi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2023
  • In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.

Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour (운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발)

  • Kim, Jinyong;Jeong, Changhyun;Jeong, Minji;Jung, Dohyun;Woo, Jinmyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment (카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발)

  • Kim, Yujin;Lee, Hojun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.