• Title/Summary/Keyword: riverine area

Search Result 63, Processing Time 0.024 seconds

Assessment of Degree of Naturalness of Vegetation on the Riverine Wetland (하천습지의 식생학적 자연도 평가)

  • Chun, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study was carried out to suggest the baseline data necessary for vegetation restoration at riverine wetland within stream corridor. We used the prevalence index for wetland assessment by applying the method of weighted averages with index values based on five hydrophyte indicator status as defined by estimated probability occurred in wetland. We selected near nature and urbanized reach of Gap and Yanghwa streams as experimental site. Although two sites have some different disturbance and characteristics of watershed, they showed that similarity of vegetation community including three dominant species - Salix koreensis, Phragmites communis, Miscanthus sacchariflorus - was very high. But in case of Yanghwa stream, various kinds of emergent plants along wetted condition were distinctly occurred, resulted from difference of hydrological regime and substrate, etc. Degree of naturalness of vegetation at the sampled areas indicated that near nature area of Gap stream and all area of Yanghwa stream were fitted as riverine wetland, while urbanized area of Gap stream has changed into upland condition. In conclusion assessment system using prevalence index would be considered an effective method for evaluating of natural states of riverine wetland, but further integrated consideration of physical, hydrological, and biological factors of stream process, and also with considering the difference between those qualitative data of vegetation community.

Evaluation of Urban Riverine Area Usage -Gapcheon and Yudungcheon in Daejeon City - (도시하천의 공간이용 평가 -갑천과 유등천을 중심으로-)

  • Jang, Chang-Lae;Kim, Jeongkon;Lee, Gwangman
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.4
    • /
    • pp.1-12
    • /
    • 2006
  • The usages of urban riverine areas for the Gapchoen and Yudungcheon in Daejoen City were evaluated by analyzing riverbed characteristics and water quality and by surveying the status of the floodplain usage including questionnaires of people visiting the rivers. Both rivers appear to be stable with insignificant bed changes as the riverbeds are dominated by gravels. Water qualities of both rivers have been improved significantly over the past decade although there are quite large seasonal fluctuations, which is common in most rivers in Korea. The results of floodplain usage analyses show that Gapcheon is dominated with static uses (>70%) such as promenades and resting facilities, while Yudungcheon by dynamic uses (>44%) such as sports facilities. Overall, both rivers require better plans for riverine area usage management considering a balance between the dynamic uses and the static uses such as natural observation places for education and habitats for birds and fish in the rivers. The questionnaire survey results indicate that overall the present status of both rivers are satisfactory and that water quality improvement is one of the key factors to enhance the value of the riverine areas. Future river restoration should be conducted by taking into account the characteristics of urban rivers in harmony with surrounding natural sceneries.

Study on River Management Plan Considering Ecological Preservation and Flood Control of Riverine Wetland (하도습지의 생태보전 및 치수를 고려한 하천관리 방안 연구)

  • Ann, Byoung-Yun;Kim, Taek-Min;Hong, Seung-Jin;Kim, Gil-Ho;Kim, Soo-Jun;Kim, Jae-Geun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.463-476
    • /
    • 2014
  • The riverine wetlands located in the riverside bring about social conflicts through confrontation between flood control value through flood control project and ecological preservation value of riverine wetland. In this study, we identified the importance of both values through analysis of economic feasibility of flood control and ecological values of riverine wetland, and tried to suggest management plans for riverine wetland considering both of flood control safety and ecological preservation through these results. For this, we calculated the expected annual flood damage of Imjin River using the multi-dimensional flood damage analysis(MD-FDA), and calculated the total value of riverine wetland using the contingent valuation method(CVM) to estimate preservation value of riverine wetland. The result of the analysis shows that the Imjin River needs flood control project and the ecological preservation of riverine wetland is also important. Therefore, the establishment of the management plan for protecting riverine wetland is also needed. As a result, the Imjin riverine wetland was classified as the area where sedimentation continues to take place, and the flood water level to rise. On the basis of the analyzed results, it is judged that the Imjin River needs flood control for public safety and ecological consideration for ecosystem preservation in the river improvement project. So, the stepwise river improvement is desirable to protect riverine wetland and minimize ecosystem disturbance. The results is expected to be made good use as the basic study for establishment of institutional river management plans considering flood control project and riverine wetland preservation in the future.

Impacts of Reforestation on Stabilization of Riverine Water Levels in South Korea

  • JAEHYUN, YOON;SAANG JOON, BAAK;MIN YOUNG, SEO;TAEJONG, KIM
    • KDI Journal of Economic Policy
    • /
    • v.44 no.4
    • /
    • pp.1-24
    • /
    • 2022
  • We investigate how reforestation contributed to stabilization of riverine water levels in South Korea. For the purpose, we estimate an equation capturing dynamic relationships among rainfall, upstream-area tree stock, and downstream water levels in three river systems of Hongcheon, Mangyeong, and Hyeongsan, using daily observations of precipitation and water levels for the period from 1985 to 2005. Simulation based on estimation results shows that increase in the tree stock in a river basin leads to a significantly suppressed peaking in riverine water levels in response to an abrupt and concentrated rain in the upstream area. For instance, an hour-long concentration of 100mm rain results in 0.7m rise in water level if the volume of growing stock is 1 million m3, whereas the rise in water level stays below 0.27m with 5 million m3 in the growing-stock volume.

Classification of Unit Ecosystems in Damyang Riverine Wetland (담양 하천습지 내 단위 생태계의 분류)

  • Son, Myoung Won;Chang, Mun Gi;Yoon, Kwang Sung;Choi, Tae Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Damyang Wetland Reserve with $980,575m^2$ area is located in Damyang-gun, Jeonlanam-do and Buk-gu, Gwangju Metropolitan City. The purpose of this paper is to divide Damyang riverine wetland into several geomorphic units, to analyze their sediments, and to categorize small ecosystem units composing riverine wetland. Riverine wetlands are classified into three types such as riverbed-, floodplain-, and abandoned-channel-wetland, and Damyang riverine wetland belongs to riverbed-wetland type. In this paper to categorize small geomorphic units of riverine wetland, we divide small geomorphic units from aircraft images analysis, and modify and supplement them following field survey results. Damyang Wetland Reserve is categorized into 22 ecosystem units. That physical and chemical properties of their sediments are different spatially, implicate that inorganic environment of Damyang riverine wetland ecosystem is very extensive. On the basis of the results of this study, policymakers will be able to design a strategy which manage Damyang Riverine Wetland Reserve more effectively, and for them interdisciplinary researches on relationships between various fluvial landforms and various lifeforms inhabiting them in Damyang Riverine Wetland Reserve are required.

  • PDF

Estimation of PAHs Fluxes via Atmospheric Deposition and Riverine Discharge into the Masan Bay, Korea

  • Lee Su-Jeong;Moon Hyo-Bang;Choi Minkyu;Goo Jun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • Atmospheric deposition and riverine waters were sampled throughout a year, to estimate the loading fluxes of polycyclic aromatic hydrocarbons (PAHs) into the Masan Bay and its vicinity, Korea. Atmospheric deposition fluxes of total PAHs in the surveyed area varied from 62.2 to 464 ${\mu}g/m^2/year$. Concentration of total PAHs in water samples from six rivers ranged from 34.6 to 239 ng/L. Contribution of the carcinogenic PAHs to the total PAHs occupied $38\%$ and $50\%$ for atmospheric deposition and river waters, respectively. Atmospheric deposition fluxes and water concentrations of PAHs were slightly low or moderate to those in locations from some countries. Correspondence analysis was used to investigate the loading characteristics of PAHs according to transport routes. Atmospheric deposition samples were corresponded to higher molecular aromatics of PAHs, while riverine water samples were associated with lower molecular weight of PAHs. The results indicate that the higher-molecular-weight PAHs can be primarily transported by atmosphere deposition and the lower-molecular-weight PAHs can be mainly contaminated by riverine discharge into the Masan Bay and its vicinity. Loadings fluxes of PAHs into the Masan Bay and its vicinity were 39.2 g/day via atmosphere and 10.3 g/day via rivers, showing that atmospheric input was about 4 times higher than riverine one. Therefore, in order to minimize the contamination burden of PAHs from terrestrial sources to the Masan Bay and its vicinity, the control and management of PAHs deriving from atmosphere will be necessary.

Implication of Self-thinning in Salix Communities on Riverine Wetland Restoration

  • Kim, Jae-Geun;Nam, Jong-Min;Han, Mie-Hie
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.251-255
    • /
    • 2007
  • Self-thinning was measured in Salix communities on Bam Island in Seoul at various age stages. $D^2H$ was used to estimate tree biomass, where D is stem diameter at breast height or 10 cm height for plants with height <1.5 m, and H is height. A log-log plot of density versus $D^2H$ and correlation analysis indicated a significant relationship between density and biomass with equation 'log $D^2H$ = -1.27 log N + 7.06'. This indicates that self-thinning affects biomass in the Salix community with -1.27 as the thinning coefficient. If we assume a thinning exponent -3/2, then the allometric coefficient of the equation, log w = a log $D^2H$ + b, is 1.18. This is much higher than that for any other species studied in Korea. There were statistically significant relationships between age and density and between age and basal area and these relationships suggest guidelines for transplantation of willows and for the assessment of Salix community restoration projects in riverine wetlands based on standard density, basal area, and age. The results of this study may also increase understanding of succession processes in Salix community restoration in riverine wetlands.

Vegetation Classification and Distributional Pattern in Damyang Riverine Wetland (담양하천습지의 식생유형과 분포양상)

  • Ahn, Kyunghwan;Lim, Jeongcheol;Lee, Youlkyung;Choi, Taebong;Lee, Kwangseok;Im, Myoungsoon;Go, Youngho;Suh, Jaehwa;Shin, Youngkyu;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • Damyang riverine wetland was designated as a wetland protected area in 2004; that is located in the Yeongsan river mainstream. Total 30 phytosociological releves at field studies were classified with 22 vegetation types including of 101 species (unidentified 1 species). Legends of actual vegetation map were separated by 6 types; riparian forest, substitute vegetation, synanthropic vegetation, wet meadow vegetation, open water, an area of wetland vegetation is about 35 % ($386,841.86m^2$). Results of this study area as follows. The plant society of Damyang riverine wetland was conjectured that it was formed by rapidly water environment change with installed weir on the upstream of protected area and operating of Damyang dam on top of the basin. Until recently, the terrace land on the river was used to cultivate, but that would be formed fallow vegetation scenery on riverfront caused by no cultivation after designated protected area. Paspalum distichum var. indutum community designated as invasive alien plant by Korea Ministry of Environment was widely developed and Myriophyllum spicatumunrecorded in the country as newly alien species was discovered in the study zone. The plants as lapped over developing environment for Leersia japonica must be occupied habitat of native plant species having similar niche. The various plant society in Damyang riverine wetland should be developed because of environmental changes, disturbances and damages of stream.

Use of Stable Carbon Isotope Ratios (${\delta}^{13}$C) for Identification of the Origin Organic Carbon in Benthic Food Webs in Youngil Bay, Korea

  • Lee, Won-Chan;Choi, Woo-Jeung;Lee, Pil-Yong;Kang, Chang-Keun
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.124-127
    • /
    • 2000
  • The analysis of stable carbon isotope ratios for benthic fauna was applied to identify the source of carbon in benthic food webs in Youngil Bay, Korea. The ${\delta}^{13}$C values of 9 invertebrate species collected in this area showed a narrow range between -20.5 and -16.3%$_o$ with a mean of-18.1 (${\pm}$1.1)"%$_o$. The results suggest that the major source of organic carbon for the benthic fauna of the lower estuarine reaches and the oceanic sites is autochthonous marine particulate organic matter. The contribution of organic matter from terrestrial and riverine sources to the diet of the benthic fauna in this area appears to be minor, despite the considerable inflow of riverine waters.

  • PDF

A Study on the Landscape Change and Management Plan for Seomjin River Chimsil Wetland through Aerial Photograph and Sediment Analysis (항공사진 및 퇴적물 분석을 통한 섬진강 침실습지 경관변화와 관리방안)

  • Lee, Seong-Ho;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.25-39
    • /
    • 2020
  • This study analyzed the management plan of Seomjin River Chimsil Wetland by identifying landscape changes through aerial photographs analysis and concentrations of sedimentation. Geophysical Landscape Change Analysis showed that vegetation accounts for more than half of the total area. The Barren land and water body was somewhere repeatedly increased and decreased and made an irregular form in the study area. The soil was acidic, and no eurtophication was shown, but it was potential to form wetland. In addition, the research area has been terrestrification of sand bar for a long period of time, forming a soil layer. Although the characteristics of river deposits were shown in the study area, the grain size was a particulate matter, and the sorting was 'very poorly sorted'. In some areas of Seomjin River Chimsil Wetland, sand bars were formed, but most areas were undergoing to terrestrification. Therefore, in order to preserve the riverine area and to serve by a bridge between the land ecosystem and the underwater ecosystem, it is very necessary to remove some vegetation, create a proper waterway, and restore the wetland.