• Title/Summary/Keyword: riverbed

Search Result 256, Processing Time 0.031 seconds

Riverbed Change Special Quality by Nature Style Small Stream Improvement (자연형 소하천 정비에 따른 하상변동 특성)

  • Jeong, Hae-Won;Jeong, Jae-Hoon;Yoon, Jeong-Hwan;Park, Seung-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.330-335
    • /
    • 2005
  • This study was performed for the analysis of the variation characteristics on riverbed according to the arrangement of stream. It was monitored of the variation progress of riverbed dependent on the elapsed time after the arrangement and It was studied that the hydraulic adjustment of the riverbed caused by the variation of the riverbed. The large amount of deposit just after the construction in which the riverbed was arranged to natural form was come from the reduction of flow rate by the installed artificialities such as weirs and stone weirs and by the stones or the concrete blocks attached to the stream sides of riverbanks. This phenomenon was well consistent with the usual characteristics that the accumulation is induced on upper stream of hydraulic artificialities and the erosion is induced on down stream of hydraulic artificialities. The large reduction of the deposit 1 year later after the construction showed that the riverbed eroded considerably because of the recovery of flow amount and the rise of flow rate.

  • PDF

하천 바닥 퇴적층의 투수성시험과 누수계수 추정

  • Ha Gyu-Cheol;Go Dong-Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.371-374
    • /
    • 2006
  • To quantify the hydraulic connection between river and aquifer, riverbed leakance values are required to be estimated. Silt, clay, and organic materials are often deposited in rivers resulting in the streambed having a lower hydraulic conductivity than the underlying alluvial aquifer The riverbed hydraulic conductivities are measured through vertical and oblique permeameter test. Anisotropic and heterogeneous properties of riverbed hydraulic conductivity were identified. Grain size analysis and flood wave response technique were checked along with the permeameter test for the riverbed hydraulic conductivity.

  • PDF

Altitude Changes of Riverbedsin Naeseong River Before and After Yeongju Dam Construction (영주댐 건설 전후 내성천의 하상 고도 변화)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • This study analyzes altitude changes of riverbed at 6 bridges in the upper and lower reaches of Yeongju Dam in Naeseong River, from 2009 to 2016 just before and after the dam construction. For 5 years from November 2010 to December 2015 when the dam was under construction, approximately 0.091m of the riverbed altitude in average more than twice before the dam construction was lowered, because of the effects of riverbed excavation for riverside maintenance in the upper reaches and transport limitation of flow and sediment by the dam in the lower reaches. Between November 2009 and December 2016 when the dam was in pre-construction and post-construction stages, respectively, the most sites in this study in the upper and lower reaches showed lowering in the riverbed altitudes. On the other hand, the riverbed around Hoeryongpo closed to the river mouth seems to be influenced by channel changes in Nakdong River rather than by the dam construction.

Analysis of Long-Term Riverbed-Level and Flood Stage Variation due to Water Gate Operation of Multi-functional Weirs at Geum River (다기능보의 수문운영에 따른 금강의 장기하상변동 및 홍수위변화 분석)

  • Jeong, Anchul;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.379-391
    • /
    • 2015
  • Multi-functional weirs has been installed in four rivers are hydraulic structures across the river. The structures were divided into movable and fixed weirs. Hence, riverbed-level variation and sediment transport can be varied due to water gate operation. In this study, the long-term riverbed-level variation of Geum river basin due to water gate operation of multi-functional weirs was studied. Result of this study shows that the variation of thalweg elevation was greater than the variation of annual average riverbed elevation due to multi-functional weirs construction and water gate operation. Maximum riverbed degradation of thalweg elevation that occurred was 2.79m and riverbed aggradation was 1.90m. Maximum riverbed degradation of the annual average riverbed elevation that occurred was 2.16m and riverbed aggradation was 1.24m. Analysis result of flood stage by the variation of riverbed-level shows that flood stages were increased in majorities area. The maximum increase in the value of flood stage was 2.23m. For this reason, flood stages can be greater than the freeboard of the levees. Therefore, we should consider the water gate operation of multi-functional weirs when planning and managing sediment in the river. We are expecting to use the result of this study in river planning for river management and selecting the river regime.

A Study on Prediction of Sediment and Riverbed Variation According to Sediment Transportation Functions (유사량 산정공식에 따른 유사 및 하상변동 예측에 관한 연구)

  • Go, Su Hyeon;Song, In Ryeol;Kim, Chang Seok
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.263-277
    • /
    • 2004
  • The purpose of this study is to analyze the characteristics of riverbed variation due to the sediment protection weir located on the estuary of the main stream of Taehwa river using I-D finite difference model, HEC-6 model, and the followings are the results of estimating sediment transport rate, amount of scour or deposition, and accumulated amount of deposit according to before and after of the sediment protection weir removal with various flow rates in the channel. Ackers-White transport function produced the greatest sediment transport rate while Meyer-Peter showed the smallest sediment transport rate at the most down stream area of the watershed through the sediment transport rate analyses for various flow rates according to the existence or nonexistence of the sediment protection weir. Toffaleti's and Colby transport function were closest to the average value, and the difference among the results of the sediment transport functions showed up to 8~9 times. Duboy's transport function produced the greatest riverbed variation while Toffaleti's showed the smallest variation through the riverbed variation analyses according to the existence or nonexistence of the sediment protection weir. Yang's was closest to the average value, and the difference among the results of the riverbed variation analyses ranged from 1.4 times to 11 times. It is thought that a sediment transport function must be selected very carefully with respect to the criteria of sediment yield estimation because the analysis results of the sediment transport rate and riverbed variation according to flow rates showed significant differences among the sediment transport functions, and the differences of sediment transport rate and riverbed variation according to the various sediment transport functions decreased as the flow rate increased.

Flow Characteristics and Riverbed Changes Simulation for the Upstream and Downstream Sections of Gongju Bridge (공주대교 상.하류구간에 대한 흐름특성과 하상변동 모의)

  • Shin, Kwang-Seob;Jeong, Sang-Man;Lee, Joo-Heon;Song, Pum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • The flow characteristics and the aspects of riverbed changes were analyzed for the upstream and downstream sections of Gongju Bridge. The upstream and downstream had complex topography, and the sections had the confluence of tributaries and several structures. In order to simulate the flow characteristics of the target sections, 1D HEC-RAS and 2D RMA2 were applied. As a result, the longitudinal water level of the target sections matched the results of simulated 1D and 2D samples. Also, 2D SED2D were applied to predict riverbed changes. As a result of the simulation, quantitative analysis was able to be performed for longitudinal riverbed changes from the sections of sudden change, bridges, the confluence of tributaries, and bends. Also, the distribution of riverbed changes on the main sections was in close relation to flow velocity. As a result of evaluating the sensitivity of SED2D, the concentration of suspended sediment, the thickness of sand beds, and the size of sand grains affected riverbed changes sensitively. These results will be used to apply the models of riverbed changes in the future.

Estuary Riverbed Monitoring using GPS and Echo Sounder (GPS와 Echo Sounder를 이용한 하상 모니터링)

  • Hong Jung-Soo;Lee Yong-Hee;Lee Kee-Boo;Lee Dong-Rak
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.83-88
    • /
    • 2006
  • We intend to increase in efficiency of the topographic monitoring of seabed or riverbed by combined with DGPS, RTK GPS and echo sounder. For this study, we defined the error correction of the echo sounder with the experiment of water tank, which is considered the characteristic of estuary riverbed and then we developed the s/w for 3-dimensional monitoring of estuary riverbed and applied the s/w to field test and improved the various problems. On analyzing topography of estuary riverbed by combined GPS with echo sounder, the draught error which is yielded to change of length from the water surface by the movement of survey vessel to the end of the transducer was eliminated by geometrical rearrangement and we defined the correction formula, z = BM+ SAH- $DBR_{(i)}$ - DRT - ED. The sounding error about the echo sounder and characteristic of estuary riverbed was found by understanding the relation of average diameter and residual error and we defined correction formula, Y= -0.00474*In(X) -0.0045 by the regression analysis. and then we verified applicability of correction formula.

  • PDF

A Study on Application & Evaluation of Riverbed Techniques for the Formation of Hyporheic Zone (하상간극수역의 형성을 위한 하상공법의 적용과 평가)

  • Choi, Jungkwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.6
    • /
    • pp.119-133
    • /
    • 2013
  • The purpose of this study is to develop riverbed techniques to activating ecological function of hyporheic zone. Hyporheic zone maybe simply defined as an active eco-tone between surface water and groundwater, which facilitates to exchange water, nutrients and aquatic habitat occur in response to variation in discharge and bed geomorphology. The aim of this study is to evaluate the effectiveness of an applied riverbed technique for two years since its installation in the hyporheic zone. The experimental riverbed technique has been implemented on Anyang stream penetrating Anyang city in Gyunggi province. The dimension of the installed structure is 5.0 m in width, 46 m in length. Bottom layer is filled with rip-rap covered with gabion. After the implementation of the technique, the study conducts follow-up monitoring in two years of between 2011 and 2012. The results of follow-up monitoring for two years are as follows:1) In Hydro geomorphic process, the riverbed technique maintains hydraulic stability despite of several flood events in 2011, 2012. 2) After transformation to form pool-and-riffle habitat, for aquatic community composed of freshwater fish, macro invertebrate, and attached algae, the species diversity and population gradually increased. 3) The riverbed technique achieved desired effect on enhancement of ecological function in hyporheic zone.

The effects of scour depth and riverbed condition on the natural frequencies of integral abutment bridges

  • Akbari, Reza;Maadani, Saeed;Abedi, Alireza;Maalek, Shahrokh
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.85-101
    • /
    • 2019
  • The effects of foundation scour depth and riverbed condition on the natural frequencies of a typical cross-river integral abutment bridge have been studied. The conventional operational modal analysis technique has been employed in order to extract the modal properties of the bridge and the results have been used in the Finite Element (FE) model updating procedure. Two tests have been carried out in two different levels of water and wet condition of the riverbed. In the first test, the riverbed was in dry condition for two subsequent years and the level of water was 10 meter lower than the natural riverbed. In the second test, the river was opened to water flow from the upstream dam and the level of water was 2 meter higher than the natural riverbed. The results of these two tests have also been used in order to find to what extend the presence of water flow in the river and saturation of the surrounding soil affect the bridge natural frequencies. Finally, the updated FE model of the bridge has been applied in a series of parametric analyses incorporating the effect of piles' relative scour depth on the bridge natural frequency of the first four vibration modes.

Combination of GPS, Echo Sounder and GIS for Constructing 3D Riverbed Surveying System (3차원 하상측량시스템 구현을 위한 GPS와 음향측심기 및 GIS의 조합)

  • Lee, Jin-Duk;Kim, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.232-238
    • /
    • 2007
  • In this research, we constructed a 3D riverbed surveying system that is able to acquire the topographical information of a riverbed in real-time. The system consists of a RTK-GPS receiver and a echo sounder for collecting simultaneously the position and the water depth information of riverbed. A program for data composition and transformation was designed to generate the 3D coordinates by combining data of a GPS receiver and a echo sounder and made GIS database construction easy. We extracted TIN, digital elevation model and cross sectional maps of the riverbed by using GIS software from 3D data constructed through test surveying. It was shown that the accuracy of the result was RMS error of 0.069m when compared with the existing methods which use a total station and staffs. It is expected that the 3D riverbed surveying system wiil be able to be utilized to various surveying for water resources management in rivers, sea, dams, storing reservoirs and so forth.