• Title/Summary/Keyword: river system

Search Result 2,310, Processing Time 0.034 seconds

Establishment of Water Quality Standards and Water Quality Target in the Geum-River Basin (금강수계의 물환경기준과 목표수질 설정방안)

  • Yi, Sangjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.438-442
    • /
    • 2013
  • According to Geum-River restoration project, given conditions for management of water environment in the Geum-River were changed. Because of those changes, this study was investigated the establishment of water quality standards and water quality target in the Geum-River basin. For management of water environment in the Geum-River, the sub-basins and watersheds are newly divided and the water quality and ecosystem standards in the sub-basins are reestablished. Considering the consistency of water environment policy and legal system, the legal name of sub-basins and watersheds are unified. TMDL (total maximum daily load) should be implemented in the sub-basin where exceeds the water quality standards and the number of water pollutant among the water quality parameters which exceeds the water quality standards are extremely minimized. The water quality target of water pollutant for implementation of TMDL should be established same or higher concentration of water quality standards.

Occurrence of X-ray Contrast Media (Iopromide) in the Nakdong River Basin (낙동강 수계에서의 X-선 조영제(Iopromide)의 분포 특성)

  • Yoom, Hoon-Sik;Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seung-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1131-1138
    • /
    • 2012
  • The aims of this study were to investigate and confirm the occurrence and distribution patterns of iodinated X-ray contrast media (iopromide) in Nakdong river basin (mainstream and its tributaries). Iopromide was detected in 16 sampling sites. The concentration levels of iopromide on February 2011 and on October 2011 in surface water samples ranged from not detected (ND) to 1481.1 ng/L and ND to 1168.2 ng/L, respectively. The highest concentration level of iopromide in the mainstream and tributaries in Nakdong river were Goryeong and Jincheon-cheon, respectively. The sewage treatment plants (STPs) along the river affect the iopromide levels in river and the iopromide levels decreased with downstream because of dilution effects.

Development of a Stream Water Quality Model (QUAL-NIER) for the Management of Total Maximum Daily Loads (수질오염총량관리를 위한 하천수질모델(QUAL-NIER) 개발)

  • Park, Jun Dae;Shin, Dong Seok;Kim, Moon Sook;Kong, Dong Soo;Rhew, Doug Hee;Jung, Dong-Il;Na, Eun Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.784-792
    • /
    • 2008
  • Greater focus must be placed on ensuring that the water quality model (WQM) reflects the objective of its application and the characteristics of the water environment properly before it is selected. In the development or application of WQM, various factors influencing the model predictions should be reviewed so that it can perform more properly and reasonably based on scientific theory. This study reviewed the characteristic of existing WQM and the domestic river environment to find the requirements of the model application for TMDLs management in Korea. In this study, a water quality model, QUAL-NIER, was developed based on the USEPA's QUAL2E. The core structure and reaction scheme of the model was established followed by the formulation of equations according to the scheme with some supplements on the reaction mechanisms which are necessary for domestic rivers. Algorithms on the equations were set up and programmed to form a computer-based model. The developed model, QUAL-NIER was applied to the main stem of the Nakdong river. The model was calibrated and verified to data measured in 2004. The model results displayed good agrement with the field measurements for both calibration and verification. From this study, it was concluded that the developed QUAL-NIER model was very powerful with regard to the water quality simulation in domestic rivers.

Two-Dimensional Hydrodynamic and Water Quality Simulations for a Coinjunctive System of Daecheong Reservoir and Its Downstream (대청호와 하류하천 연속시스템의 2차원 수리·모의)

  • Jung, Yong Rak;Chung, Se Woong;Ryu, In Gu;Choi, Jung Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.581-591
    • /
    • 2008
  • Most of our rivers are fragmented by the presence of at least one large dam. Dams are often the most substantial controller of the flow regimes and aquatic environments of natural river system. The quality of downstream water released from a stratified reservoir is highly dependent on upstream reservoir water quality. Thus, an integrated modeling approach is more efficient, compared to fragmented modeling approach, and necessary to better interpret the impact of dam operation on the down stream water quality. The objectives of this study were to develop an integrated reservoir-river modeling system for Daecheong Reservoir and its downstream using a two-dimensional laterally averaged hydrodynamic and water quality model, and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using filed data obtained in 2004 and 2006. The model showed satisfactory performance in predicting temporal variations of water stage, temperature, and suspended solid concentration. In addition, the reservoir-river model showed efficient computation time as it took only 3 hours for one year simulation using personal computer (1.88 Ghz, 1.00 GB RAM). The suggested modeling system can be effectively used for assisting integrated management of reservoir and river water quality.

A Study of Information Update and Framework for Intergrated Maintenance and Operation of River Facilities (하천시설 통합 유지운영을 위한 정보 현행화 및 프레임워크 구축방향 연구)

  • Nam, Jeong-Yong;Kim, Min-Jeong;Jo, Chan-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.140-149
    • /
    • 2017
  • Recently, it has become necessary to consider climate change when managing multi-purpose river functions. However, in terms of domestic rivers, the management of national and local rivers is separated and the river information cannot be integratedly handled. Especially, it is not sufficient to collect and update information by recycling reports for design and construction. In addition, the basic information of the rivers is dependent on the GIS-based RIMGIS system, but the reliability of the information is deteriorating due to the construction of spatial information using the river basement planning results. The purpose of this study is to investigate the current status of the information system with regard to the maintenance and operation of the river facilities. Through the verification of actual cases, the optimal solution was suggested from the point of view of practical information. As a result, we constructed an information system for the reliable maintenance of river facilities and examined the integrated information management plan. The results of this study can be used to improve the existing information and technical and institutional procedures for the integrated maintenance and operation of river facilities. It will be helpful to introduce the BIM as well as solve to the information gap with other fields through the establishment of an information framework to improve the information construction of river areas.

Quantifying Contribution of Direct Runoff and Baseflow to Rivers in Han River System, South Korea (한강수계의 하천에 대한 직접유출과 기저유출의 기여도 정량화)

  • Hong, Jiyeong;Lim, Kyoung Jae;Shin, Yongchul;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.309-319
    • /
    • 2015
  • River characteristics in South Korea has been affected by seasonal climatic variability due to climate change and by remarkable land cover change due to rapid economic growth. In this regard, the roles of river management is getting more important to eco-system and human community in watersheds of South Korea. Understanding river characteristics including direct runoff and baseflow, the first step of river management, can give a significant contribution to sustainable river environment. Therefore, the objective of this study is to quantify the contributions of the direct runoff and baseflow to river streamflow. For this, we used the BFLOW and WHAT programs to conduct baseflow separation for 71 streamflow gauge stations in Han River system, South Korea. The results showed that baseflow index for 71 stations ranges from 0.42 to 0.78. Also, gauge stations which have baseflow index more than 0.5 occupied 76% of a total stations. However, baseflow index can be overestimated due to human impacts such as discharge from dams, reservoirs, and lakes. This study will be used as fundamental information to understand river characteristics in river management at the national level.

Analysis of Land Use Change within Four Major River Areas Using High-Resolution Air-Photographs: The Case of the Nakdong River Basin (고해상도 항공사진을 이용한 4대강 하천구역 내 토지이용변화 분석 - 낙동강 유역을 사례로)

  • Park, Soo-Kuk;Kim, Jin;Lee, Kil-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.171-188
    • /
    • 2013
  • Landuse changes and cadastral information error categories in the four major river areas were analyzed for the use of policy data as cadastral re-arrangement of national and public lands would be required, using high-resolution air-photographs and cadastral maps before and after the river development. The study sites were the river areas of 40km around four dams of the Nakdong river where their landuses were changed most. As the results, national and public lands reached 79.9% of land parcels and 93.3% of land areas of the study sites similar with those of the four river areas, 84.3% of land parcels and 85.5% of land areas. The landuse classification of the study sites before the four river development was consisted most of 'river'(71.6%) and 'rice field'(12.3%), but after the development the 'river' was reduced to 42.7% and 'park area'(19.6%) including sport fields and 'mixed lots'(20.8%) were increased. Also, 86.7% of land parcels before the development could be reduced after the development if administrative districts and land ownerships were not considered. Cadastral information error categories can be found as cadastral polygon missing, polygon overlap, location and boundary non-coincidence, small polygon generation, and non-coincidence between cadastral boundary and river boundary. Landuse change monitoring method using air-photographs will be useful to analyze landuse state through fast information aquisition and to manage properties of national and public lands such as river areas.

The Change Process of River Management Policy and the Factors of Dam and River-mouth Weir's Problems in Japan (일본 하천관리정책의 변화과정과 댐.하구언 문제의 요인)

  • Ito, Tatsuya;Lee, Chul Woo
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.2
    • /
    • pp.176-188
    • /
    • 2014
  • Since the late 1990s, a nationwide movement against dam and river-mouth weir plans in Japan has been promoted with a movement against a river-mouth weir for the Nagara river(長良川). This movement has been a catalyst for institutional frameworks on the central government's dam and river-mouth weir plans. Subsequently, water resource and river management policies have entered a new phase, with provinces governors's participation in "Statements on withdrawal from dam and river-mouth weir" as well as the seizing of power by the Democratic Party. However, problems with dams and river-mouth weirs have been confused due to poor countermeasures from the Democratic Party and to the Liberal Democratic Party(LDP)'s return to power. The fundamental causes on this situation are the non-establishment of fiscal norms for public projects and the rigidity of the water-right allocation system in Jananese policy-making processes. To successfully settle future policy on water resources and rivers, the first priority is to prepare specific institutional frameworks on finance of public projects and to organize a practical policy coordination system among government organizations. These policy tasks provide implications for river and water management policy in Korea.

  • PDF

A Reinvestigation on Key Issues Associated with the Yimjin(1712) Boundary Making and Demarcation: Location of 'Yipjiamlyu' and the Confluence of 'Tomungangweon' into the Sungari River (임진정계시 '입지암류(入地暗流)'의 위치와 '토문강원(土門江源)'의 송화강 유입 여부)

  • Lee, Kang-Won
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.6
    • /
    • pp.571-605
    • /
    • 2015
  • This research revealed that 'Yipjiamlyu' in the Mukedeng's map is geographically 'a beginning point of underf low,' whose location is on the Heishigou's riverbed(E.L. 1,840m) in the NNE side of Daegakbong peak, and that 'Tomungangweon'(Heishigou) is one of the upstream reach of the Sungari River, which, according to historical documents and my fieldwork, Mukedeng also knew at the time of Yimjin(1712) Boundary Making and Demarcation(YBMD). These findings suggest the need to reinterpret the processes of YBMD. Mukedeng set up the Baekdusanjeonggyeobi on the mistaken assumptions on the linkage of 'Yipjiamlyu' and Tumen River. It should have been set up on the Daeyeonjibong peak. Mukedeng found the 'Yipjiamlyu' on the riverbed of 'Tomungangweon'(Heishigou), went downstream, and realized that this river did not flow into the Tumen River. During the search for the source of Tumen River, he found a water stream, and regarded it as the source of Tumen River. He speculated that the water at the 'Yipjiamlyu' flows through the underground to reappear at the his 'identified' source of Tumen River. Consequently, he adjured the construction of demarcation from Baekdusanjeonggyeobi through 'Yipjiamlyu' to the his 'identified' source of Tumen River. The water stream pointed as the source of Tumen River, however, was not part of the upstream reach of Tumen River. Actually, Korean officials, who were in charge of establishing boundary features, set up the demarcation from Baekdusanjeonggyeobi through Huanghuasongdianzi to the true source of Tumen River identified by themselves, which Mukedeng had not intended. The ambiguity of the location of 'Yipjiamlyu' caused a difference between Mukedeng's original request and Korean officials' implementation in the boundary demarcation. Throughout the whole processes of YBMD, Korea(Joseon) and China(Qing) both mistook the real geography of the river system. Their understanding on Yalu River system was correct. But the identification of the spring source of the Tumen River by Korean participants was the only geographically correct result related on this river system in YBMD.

  • PDF

Geochemical Study on the Alluvial Aquifer System of the Nakdong River for the Estimation of River Bank Filtration (강변여과수 개발을 위한 낙동강 충적층 지하수의 지구화학적 특성연구)

  • 김건영;고용권;김천수;김형수;김성이
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.83-105
    • /
    • 2003
  • Geochemical studies on the alluvial aquifer system near the Nakdong River were carried out for the basic investigation of the estimation of artificial recharge for the river bank filtration. In-situ data do not show any distinct difference between the pumping well and river. Most of waters belong to $_3$ and Ca-$SO_4$ types and show high Mn concentration. In the borehole installed with Multi-Ca-HCOPacker (MP) system, Na, Ca, Mg, $HCO_3$ contents of the groundwater are increased with depth increasing. Cl and $SO_4$ contents of the groundwater show the lowest values at the bottom level (18m depth) and Mn content is very high at the middle level (13.5 m depth) of MP system. There is no distinct difference in the ${\delta}^{18}O$ and D values and tritium content between MP, borehole and surface water samples. The sulfur isotope data indicate that the possible sulfur source is dissolution of sulfate mineral from sedimentary rock. Strontium isotope ratio shows a little differences between the pumping well and observation borehole samples. Nitrogen isotope data indicate that the nitrogen of water samples is originated from fertilizer or organic materials.