• Title/Summary/Keyword: river management flow

Search Result 421, Processing Time 0.024 seconds

Balancing Multiple Needs in Conflicts for an Urbanized River Basin

  • Yoshitani, Junichi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.53-57
    • /
    • 2007
  • Tsurumi River Basin successfully started to prepare a Water Master Plan though a series of discussions by gathering all stakeholders in a hall. It began with setting five management targets namely, flood, low flow, natural environment, emergency use, and recreational use, followed by setting management goals by target as well as a one-sentence catchphrase for the Water Master Plan using a bottom-up approach. The author reviews this process and discusses the background of the success.

  • PDF

River Discharge Estimation by Specific Discharge Measurement (비유량법에 의한 하천유량 산정)

  • Chol Heechul;Kim Joonha;Yang Heakun
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.274-284
    • /
    • 2005
  • On the subject of Yeoungsan River Yeoungbon c and Seumjin River Seumbon e site discussing as the measuring points of discharge and Quality by the Department of Environment, this study executes the tests of proprieties and examines the methods of flow measuring and assessment. The result of this study may summarize as belows. According to the hydrogeomorphological aspects and artificial effects, Yeoungbon c and Seumbon e site are not proper for the measuring points of the water levels. Also, the methods of river discharge measuring by the specific discharge method, first tried in this study, has an enough reliability which can be used to measure the site where is difficult to measure the flow directly or to select the representative site to measure on the up and downstream. In case of accumulating the specific discharge data throughout the flow observation by seasons and periods for a long time, these may be used to measure the flow as well.

Estimation of the Irrigation Return Flow of Pumped Water in the Keum River Watershed (금강유역 양수장지구의 농업용수 회귀량 산정)

  • 김영식;박정남;안병기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.105-110
    • /
    • 1999
  • Unused irrigation water due to delievery losses and management losses. and ground water releases from infiltration in the paddy irrigation system are eventually returned to the stream. They are called as irrigation return flow. It affects the discharge of drought flow in the down strenamflow. And it may contain chemicals, and threaten streamflow quality . Thus, the accurage estimation of irrigation return flow is important to the streamflow modeling and water resources planning , and also to the control of agriculutral nonpoint source pollution . The irrigation return flow of pumped water was investigated in the Keum river watershed.

  • PDF

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

Analysis ofriverflow using the ADCP postprocessing software (adcptools) (ADCP 후처리 소프트웨어(adcptools)를 이용한 하천 흐름 분석)

  • Lee, Chanjoo;Kim, Jong Pil;Park, Edward;Kastner, Karl
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.103-115
    • /
    • 2016
  • At present, an acoustic Doppler current profiler (ADCP) is one of the most suitable tools for measurement of three dimensional flow characteristics in the river. The data resulting from this approach can be used for flow visualization and velocity mapping together with post-processing software tools. Among them, 'adcptools' is the latest one and provides more realistic velocity distribution in the cross-section since it uses velocity along the beam direction. In this study, a flow analysis was made using the 'adcptools' for the Amazon River and the Han River dataset. Discharge was recalculated and accuracy of discharge and velocity was evaluated. Streamwise velocity distribution and secondary flow pattern in cross-sections were visualized. Geo-referenced velocity distribution was also mapped. A summary with future prospect of 'adcptools' for studies on fluvial geomorphology is briefly given.

Water Quality Analysis in Nakdong River Tributaries (낙동강 지류·지천 모니터링 결과를 이용한 수질환경 평가)

  • Im, Tae Hyo;Son, Younggyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1661-1671
    • /
    • 2016
  • Water quality in Nakdong river was analyzed using 699 monitoring data sets including flow rates and water quality concentrations collected at 195 tributary monitoring stations (the priority management areas: 35 stations, the non-priority management areas: 160 stations) in 2015. The highest average concentrations of all data for BOD, COD, T-N, T-P, SS, and TOC were 30~600 times higher than the lowest concentrations while the highest average loading rates were 800,000~2,700,000 times higher than the lowest loading rates. Because of the very large differences in the concentrations and loading rates, the variation of the concentrations and loading rates in a priority management monitoring station for BOD, T-P, and TOC was analyzed using the coefficient of variation, the ratio of the standard deviation value to the mean value. For BOD, T-P, and TOC, the coefficients of variation for concentration were mostly less than 100%, whereas the coefficients of variation for loading rate ranged from 31.1% to 232.2%. The very big difference in the loading rates was due to the large variation in flow rates. As a result of this, the estimation of water quality at each monitoring station using the average values of the concentrations and loading rates might be not rational in terms of their representativeness. In this study, new water quality analysis methods using all collected monitoring data were suggested and applied according to the water quality standard in medium-sized management areas.

Analysis of Load Duration Curve Using Long Time Flow Measurement Data of Kyeongancheon (장기간 유량측정 자료를 이용한 경안천의 부하지속곡선 특성)

  • Noh, Changwan;Kwon, Phil-Sang;Jung, Woo-Seok;Lee, Myung-Gu;Cho, Yong-Chul;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 2019
  • Long term flow measurement and water quality analysis data need to determine the target and allowable load for each basin in Total Water Pollution Load Management System (TWPLMS). The Load Duration Curve (LDC) is analyzed the relationship between flow data and water quality, and evaluates the pollutant load characterization by flow conditions. LDC of Kyeongancheon is created by the Flow Duration Curve (FDC) that was analyzed 8-day interval measured flow data from 2006 to 2015 and numeric water quality target in Kyeongancheon. As a result of this study, it is necessary to manage the point source pollutant because the numeric water quality target is not satisfied in the low flows. Also the numeric water quality target has been exceed for four months from March to June of the year and continuous and systematic watershed management is required to satisfy the numeric water quality target.

The Management Planning of Pollutant Loading Allocation in the Kumho River Basin (금호강 유역의 오염총량 관리 대책 수립)

  • 황병기;정효준
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1125-1131
    • /
    • 2002
  • This study was performed to plan pollutant loading allocation by sub-watershed at Kumho river basin located in the north Kyeongsang province. HEC-geoHMS which is extension program of ArcView was used to extract sub-watershed. To simulate water quality, Qua12eu model was calibrated and validated. BOD was simulated under several scenarios to evaluate reduction effects of pollutant loading. Uniform treatment and transfer matrix method was considered. Effects of headwater flow rate and efficiency waste water treatment plant were also considered.

Development of River Management System with Operation of an Experimental Watershed (시험유역의 운영을 통한 하천관리시스템의 개발)

  • Kim, Sang Ho;Choi, Hung Sik;Lee, Eul Rae
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 2006
  • River Management System was developed to achieve water quality analysis that reflects physical characteristics of river flow. The Gyecheon basin which is located at the upstream of Hoengseong dam was selected as an experimental watershed and hydrologic and water quality monitoring network was set up for acquisition of real time data. The observed data have been stored in the system until present. The hydraulic and water quality models were constructed for an experimental watershed, and the calibration and verification was performed using past flood events and observed water quality data. Graphic User Interface(GUI) was developed with ArcView in a study area. Developed system can be effectively used to water quality monitoring and management in Hoengseong Lake.

  • PDF

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF