• Title/Summary/Keyword: river management flow

Search Result 421, Processing Time 0.023 seconds

Estimation of discharge coefficients of the broad-crested side weir with various levee's side slope of main channel (본류수로의 제방사면경사에 따른 광정횡월류위어의 유량계수 산정)

  • Kang, Ho-Seon;Cho, Hong-Je
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.941-949
    • /
    • 2016
  • The flow characteristics of the broad-crested side weir considering the levee's side slope of main channel ($ES_{ch}$) was investigated through hydraulic experiment in order to estimate the discharge coefficient equation. For applicability to actual river, levee's side slope of main channel 1:0.5, 1:1 and 1:2 were selected. Experimental results show that the new estimated equation for the discharge coefficient including $ES_{ch}$ is reasonable and effective in actual applications by comparing estimated and measured discharge over side weirs. Through a multiple linear regression analysis the importance of variabes were ordered as $ES_{ch}$ > $h/y_u$ > $L/y_u$ > $Fr_u$. Especially the discharge coefficient equation without $Fr_u$ was suggested, and the high applicability was reviewed by comparing the measured and calculated overflow of broad-chested side weir.

Possible Uses of Reclaimed Wastewater Effluent Treated Using Birm Filtration Along UF, and Analysis on Membrane Fouling (하수방류수 재이용을 위한 Birm filter + UF 적용시 용도별 사용 가능성 및 막오염 특성)

  • Jung, Jin-Hee;Lee, Seung-Chul;Sung, Nak-Chang;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1467-1474
    • /
    • 2016
  • In response to the water shortage problem, continued attempts are being made to secure consistent and reliable water sources. Among various solutions to this problem, wastewater effluent is an easy way to secure the necessary supply, since its annual output is consistent. Furthermore, wastewater effluent has the advantage of being able to serve various purposes, such as cleaning, sprinkling, landscaping, river management, irrigation, and industrial applications. Therefore, this study presents the possible use of reclaimed industrial wastewater treated with Birm filters and a UF membrane, along with an analysis on membrane fouling. The preprocessing stage, part of the reclamation process, used Birm filters to minimize membrane fouling. Since this study did not consider heavy metal levels in the treated water, the analyses did not include the criterion for irrigation water quality. However, the wastewater reclaimed by using Birm filters and a UF membrane met every other requirement for reclaimed water quality standards. This indicated that the treated water could be used for cleaning, channel flow for maintenance, recreational purposes, and industrial applications. The analysis on the fouling of the Birm filter and UF membrane required the study of the composition and recovery rate of the membrane. According to SEM and EDX analyses of the UF membrane, carbon and oxygen ion composition amounted to approximately 57%, whereas inorganic matter was not detected. Furthermore, the difference in the recovery rates of the distressed membrane between acidic and alkaline cleaning was more than ~78%, which indicated that organic rather than inorganic matter contributed to membrane fouling.

Determination of EMC and Unit Loading of Rainfall Runoff from Forestry-Crops Field (산림과 밭 지역 강우 유출수의 EMC 및 원단위 산정)

  • Won, Chul-hee;Choi, Yong-hun;Seo, Ji-yeon;Kim, Ki-cheol;Shin, Min-hwan;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.615-623
    • /
    • 2009
  • The research of the determination of event mean concentration (EMC) was focussed combined sewer overflows and highway runoff in korea. But those of non-urban areas are few. In this study, EMC and unit loading on land use types in Nogok watershed were estimated by runoff loading of non-point source (NPS) on non-urban area. Two monitoring sites were equipped with an automatic velocity meter, flow meter, and water sampler. Monitoring was conducted at two monitering site during the rainy season. The results show that the EMC ranges in forest land use are 1.3~2.6 mg/L for BOD, 2.0~16.1 mg/L for SS, 0.1~2.1 mg/L for TN, and 0.12~0.49 mg/L for TP. The unit loading of NPS in this study was difficult to compare directly with that used conventionally because of the difference of field investigation. In near future, it needs to conduct more systematic and long-term research about NPS within the watershed. The results of this research can be used to estimate the total pollution load management system (TPLMS) program in korea.

Water Quality Prediction of the Miho Stream Using GIS (GIS를 이용한 미호천의 장래수질예측)

  • Noh, Jun-Woo;Lee, Sang-Jin;Lee, Sang-Uk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • This study conducted water quality projection of year 2010 in Miho stream of the Geum river basin by using GIS. Pollutant load data of corresponding tributary of the Miho stream is estimated based on the pollutant load of TMDL zone to simulate water quality of the Miho stream for BOD, TN, and TP. The pollutant load of the urban area such as Bochung and Musim stream basin is relatively high and the wastewater treatment plant of Chunju city directly affects the entire water quality of the target area. As a result, simulation result reveals that water treatment facility needs more refined treatment process for efficient water quality management. Also, to meet the target water quality of the Miho stream water quality simulation estimates the additional dilution flow by increasing irrigation water supplied from the Daechung dam through the Musim stream.

  • PDF

A Study on the Environmentally Favorable Arrangement Technique of Water Space Considering Stream Landscape (하천경관을 고려한 환경친화적 수변공간 정비기법 연구)

  • Kim, Sun-Joo;Park, Sung-Sam;Lee, Kwang-Ya;Yoon, Kyung-Sub
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.57-69
    • /
    • 1998
  • The creation of favorable water space, in our living circumferential space, is very important factor to offer rural scenery to neighbor residents. We are to introduce stream landscape arrangement technique considering favorable water environment against conventional methods. In this study, the modeling district is Seungdu small stream of Ansung river system in Pyung-Teak city, Kyonggi province, and we carried out stream landscape simulation. The arranging plans of landscape are classified ti three types. The first one is conservation type of ecological environment that can express natural characteristics of stream inherence, raise variety of living things and construct coexisting environment between human beings and the other living things. The secong one is favorable water approach type. The basic object of this type is space construction for easy approach to waterside and increase of comfortable feelings of spectators. The third one is water utilization/flood control management type. In planning of environmentally favorable landscape arrangement, this type is the most important but is likely to be ignored. This type is an arranging plan of stream landscape considering safety. Also, we developed Streams Landscape Simulation System(SLSS). This program can be used for comparison of original landscape image with simulated one. To apply SLSS on the interested stream, landscape simulation that is based on hydraulic characteristics, runoff, flow direction, detailed conditions of basin and ecosystem of stream have to be executed. In this point, developing a stereographical technique of image processing and exact study of applying plan have to be executed continually.

  • PDF

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

The Discharge Measurement System with River-Crossing Structures for Ecological Management during Low Flow Season (갈수생태관리를 위한 중소하천 횡단구조물에서 유량측정 시스템)

  • Lee, Nam-Joo;Kang, Joon-Gu;Yeo, Hong-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.649-649
    • /
    • 2015
  • 최근 기후변화 및 이상기후로 인해 하천환경 또한 급격하게 변화되고 있다. 변화되는 지구환경에 대응하기 위해 하천환경 대책과 하천생태계 보전/복원, 생물 보호, 친수기능 강화를 요구하고 있는 실정이다. 더욱이 소하천 건천화 및 하천환경관리에 대한 중요성은 대두되고 있으나 비용 및 인력투입 문제로 수위나 유량 등의 기초자료인 수위-유량 계측기술 및 대응연구가 미미한 실정이다. 체계적인 하천관리를 위해서는 신뢰성 있는 대상 하천의 수리량 자료 확보가 기본으로 요구된다. 이러한 중소하천의 관리의 신뢰도를 높이기 위해서는 실시간 수위유량 자료 확보가 필수적이다. 현재 하천 정비 계획 단계에서 수문모델링을 통해 중소하천의 유량을 산정하고 있지만 산발적으로 측정한 자료로는 검/보정에 한계가 있으며, 신뢰도를 확보하기 어려운 실정이다. 이수, 환경, 생태 등의 관점에서는 평상시 유량에 대한 실시간 정보가 매우 중요하다. 이에 체계적인 하천관리를 위해서는 중소하천에 대한 실시간 수리량 자료를 경제적으로 확보 할 수 있는 장치 개발 및 현장적용이 시급하다. 본 연구에서는 하천 횡단구조물이 가지고 있는 유량 측정의 편이성을 최대한 이용하여 급성장하고 있는 영상분석기술과 IT을 하천공학분야에 접목하여 중소하천의 수위와 유량을 실시간으로 원격 측정하는 WIA (Wireless Image Acquisition) 시스템을 개발하였다. WIA 시스템은 라즈베리파이 기반으로 적외선카메라를 이용하여 일정한 시간간격으로 횡단구조물의 상류, 중류, 구조물 주위의 흐름 영상을 확보하여 중앙처리장치로 전송하는 시스템으로 구성된다. WIA 시스템에서 전송된 영상은 본 연구에서 개발한 영상판독 S/W 및 H-Q 산정 S/W를 통해 하천의 수위를 판독하고 실시간으로 하천단면 수위유량 산정 자료 구축하는 자료로 활용된다. 현재 WIA 시스템의 성능 및 개선과 영상판독 S/W 및 H-Q 산정 S/W서버와의 연계운영 성능 평가를 통해 장치를 검증하는 단계에 있으며, 추후 서버구축을 통해 홍수 예 경보와 하천수질관리를 위한 기초자료로 활용될 것으로 기대된다. 또한 본 연구에서 개발하는 유량측정 시스템을 적용하면 기존 장비의 약 15% 예산으로 실시간 수리량 자료를 확보할 수 있을 것으로 예상된다.

  • PDF

A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model (머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구)

  • Go, Woo-Seok;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

Development of Return flow rate Prediction Algorithm with Data Variation based on LSTM (LSTM기반의 자료 변동성을 고려한 하천수 회귀수량 예측 알고리즘 개발연구)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2022
  • The countermeasure for the shortage of water during dry season and drought period has not been considered with return flowrate in detail. In this study, the outflow of STP was predicted through a data-based machine learning model, LSTM. As the first step, outflow, inflow, precipitation and water elevation were utilized as input data, and the distribution of variance was additionally considered to improve the accuracy of the prediction. When considering the variability of the outflow data, the residual between the observed value and the distribution was assumed to be in the form of a complex trigonometric function and presented in the form of the optimal distribution of the outflow along with the theoretical probability distribution. It was apparently found that the degree of error was reduced when compared to the case not considering where the variance distribution. Therefore, it is expected that the outflow prediction model constructed in this study can be used as basic data for establishing an efficient river management system as more accurate prediction is possible.

The Influence Analysis of GIS-based Soil Erosion in Water-pollutant Buffering Zone (GIS기반 수변구역의 토사유실 영향 분석)

  • Lee, Geun Sang;Hwang, Eui Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.335-340
    • /
    • 2006
  • Geology and terrain of Imha basin has a very weak characteristics to soil erosion, so much soil particles flow into Imha reservoir and bring about high density turbid water when it rains a lot. Especially, since the agricultural area of Imha basin is mainly located in river boundary, Imha reservoir has suffered from turbid water by soil erosion. Therefore, it is important to estimate the influence of soil erosion to establish efficient management of water-pollutant buffering zone for the reduction of turbid water. By applying GIS-based RUSLE model, this study can acquire 12.23% that is the ratio of soil erosion in water-pollutant buffering zone and is higher than area-ratio (9.95%) of water-pollutant buffering zone. This is why the area-ratio of agricultural district (27.24%) in water-pollutant buffering zone is higher than the area-ratio of agricultural district (14.96%) in Imha basin. Also as the result of soil erosion in sub-basin, Daegok basin shows highest soil erosion in water-pollutant buffering zone, second is Banbyeon_10 basin and last is Seosi basin.