• Title/Summary/Keyword: river management flow

Search Result 421, Processing Time 0.025 seconds

Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain

  • Rojas-Serrano, Fatima;Alvarez-Arroyo, Rocio;Perez, Jorge I.;Plaza, Fidel;Garralon, Gloria;Gomez, Miguel A.
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • Ultrafiltration membranes have several advantages over conventional drinking-water treatment. However, this technology presents major limitations, such as irreversible fouling and low removal of natural organic matter. Fouling depends heavily on the raw-water quality as well as on the operating conditions of the process, including flux, permeate recovery, pre-treatment, chemical cleaning, and backwashing. Starting with the premise that the optimisation of operating variables can improve membrane performance, different experiments were conducted in a pilot plant located in Granada (Spain). Several combinations of permeate and backwashing flow rates, backwashing frequencies, and aeration flow rates were tested for low-quality water coming from Genil River with the following results: the effluent quality did not depend on the combination of operating conditions chosen; and the membrane was effective for the removal of microorganisms, turbidity and suspended solids but the yields for the removal of dissolved organic carbon were extremely low. In addition, the threshold transmembrane pressure (-0.7 bar) was reached within a few hours and it was difficult to recover due to the low efficiency of the chemical cleanings. Moreover, greater transmembrane pressure due to fouling also increased the energy consumption, and it was not possible to lower it without compromising the permeate recovery. Finally, the intensification of aeration contributed positively to lengthening the operation times but again raised energy consumption. In light of these findings, the feasibility of ultrafiltration as a single treatment is questioned for low-quality influents.

Analysis of Water Quality Improvement in Downstream River of Heightening Irrigation Dam through the Reservoir Operation (둑높이기 농업용저수지의 운영을 통한 하천 수질개선 효과 분석)

  • Jee, Yong-Keun;Lee, Mi-Seon;Lee, Jin-Hee;Jang, Jea-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.929-941
    • /
    • 2012
  • In recent years, interest in river environment such as riparian landscape, water quality and ecological conservation has been growing with increasing recreation on agricultural river watershed. That caused the increase of necessity of water resources development, one of solutions for the diversification of agricultural water demand and shortages. In this respects, heightening irrigation dam, as a part of the 4-major river restoration project, is necessary to secure not only additional agricultural water but also instream flow for water quality improvement. However, operation plan of irrigation dam still not be clear. In this study, additional storage which secured through heightening irrigation dam was estimated using SWAT model. And instream flow effects on water quality of downstream were evaluated. The findings show that the additional water supply will contribute positively to water quantity and quality of downstream. The results show a 2~10% water quality improvement effect on nutrients, as well as an 1~8% water quantity increasing effect. In particular, additional storage can be effectively supplied from February to April by the reservoir operation. However, maintaining better water quality in irrigation reservoirs is important because the water quality of irrigation reservoirs can be negatively impacts the water quality in downstream of reservoirs.

An analysis on geomorphic and hydraulic characteristics of dominant discharge in nam river (남강의 지배유량에 대한 하도지형 및 수리 특성 분석)

  • Kim, Ki Heung;Lee, Hyeong-Rae;Jung, Hea Reyn
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.83-94
    • /
    • 2016
  • Geomorphological, bed material and hydraulic characteristics are basis informations for the planning, design and management of the river in the aspect of flood control and environmental conservation, and it is very important to use these informations for the design of stable channel. In this study, dominant discharge was selected, geomorphological and hydraulic characteristics were analyzed using that discharge and also the characteristics of bed materials distribution were analyzed and bed materials-flow resistance relationship was evaluated, for the upstream section of Namgang dam. The dominant discharge was estimated a return period of approximately 1.5 year and stream type were classified Segment 1 and Segment 2 in this stream. Also, the frequency of riffle-pool showed 4.4 because this study area has the characteristics of natural channel that have not channel-crossing structures. In dominant discharge, according to the results that analyzed relationship between $h/d_{50}$ and $V/u_*$ to calculate flow resistance by bed materials, Julian's formula showed to appropriate in channel where is relatively close to natural river and is predominantly consisted of gravel, cobble, boulder and rock in mountain, and it was confirmed that the image processing methodology will be easily applied to the analysis of bed materials distribution in future.

Analysis of Water Quality Variation by Lowering of Water Level in Gangjeong-Goryong Weirin Nakdong River (낙동강 강정고령보 수위저하 운영에 따른 수질 변동특성 분석)

  • Park, Dae-Yeon;Park, Hyung-Seok;Kim, Sung-Jin;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.245-262
    • /
    • 2019
  • The objectives of this study were to construct a three-dimensional water quality model (EFDC) for the river reach between Chilgok Weir and Gangjeong-Goryong Weir (GGW) located in Nakdong River, and evaluate the effect of hydraulic changes, such as water level and flow velocity, on the control of water quality and algae biomass. After calibration, the model accurately simulated the temporal changes of the upper and lower water temperatures that collected every 10 minutes, and appropriately reproduced changes in organic matter, nitrogen, phosphorus, and cyanobacteria. However, the simulated values were overestimated for the diatoms and green algae cell density, possibly due to the uncertainties of the parameters associated with algae metabolism and the lack of zooplankton predation function in the simulations. As a result of scenario simulation of running the water level of GGW from EL. 19.44 m to EL. 14.90 m (4.54 m drop), Chl-a and algae cell density decreased significantly.In particular,the cyanobacteria on the surface layer, which causes algal bloom, declined by 56.1% in the low water level scenario compared to the existing management level. The results of this study are in agreement with the previous studies that maintenance of critical flow velocity is effective for controlling cyanobacteria, and imply that hydraulic control such as decrease of water level and residence time in GGW is an alternative to limit the overgrowth of algae.

A Study on Return Flow Ratio of Irrigation for a Paddy Field in Pumping Station by Water Balance Method (물수지분석 기법에 의한 양수장 몽리구역내 농업용수 회귀율 연구)

  • Choo, Tai-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.249-255
    • /
    • 2004
  • To investigate the return flow ratio of irrigation water, lots of observations were made during the irrigation periods in 2003 crop year. This Area is a portion of Dae-Am pumping station basin which is located in Changryung-gun, Gyeongnam province. A water balance analysis was performed for a paddy field in Dae-Am pumping station in the Nakdong river basin, which is constructed for irrigation water supply. Daily rainfall data in the this area were collected and irrigation water flow rate, drainage water flow rate, infiltration and evaportranspiration were measured in field area. Irrigation water flow rate and drainage water flow rate were continuously observed by water level logger(GTDL-L10) during the growing season. The infiltration and evaportranspiration were measured by cylindrical 300mm depletion meter and cylindrical 200mm infiltrometer, respectively. Total irrigation and drainage flows were 654.7mm and 281.2mm in 2003. Total infiltration and evaportranspiration were 36.0mm and 160.0mm respectively. The mean of the daily evaportranspiration rate was 4.3mmm/d. The prompt return flow and retard return flow ratio were 43.0% and 5.5%, respectively. Total return flow ratio was 48.5%. Therefore, it can be concluded that the amount of irrigation water was much higher than design standard or reference in this study. It means that this was caused by the inadequate water management practice in the area where water was oversupplied on farmers' request rather than following sound water management principles, and design standard should be changed in the future.

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

Fish Community and Habitat Environmental Characteristics in the Gudam Wetland

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Hui-Seong;Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, we investigated the water quality and fish community of the Gudam Wetland, a riverine wetland in the middle-upper reaches of the Nakdong River, during March-October 2020. The main results were as follows: average annual flow rate: 45.0±23.7 m3/s, flow velocity: 0.4±0.3 m/s, water depth: 1.4±0.4 m, water temperature: 17.5±0.8℃, pH: 7.8±0.2, electrical conductivity: 121.6±19.0 ㎲/cm, dissolved oxygen concentration: 11.4±0.9 mg/L, suspended solids concentration: 3.8±2.0 mg/L, and the water quality was classified as Ia (very good). A total of 754 individual fish belonging to 4 orders, 7 families, and 19 species were investigated. Cyprinidae was the dominant group, with 13 species. The dominant species was Zacco platypus (39.3%), followed by Pseudogobio esocinus (17.5%). There were 8 (42.1%) endemic Korean species and 1 exotic species, Micropterus salmoides. Four species were carnivores, six were insectivores, and nine were omnivores. Regarding tolerance to environmental changes, 6 species were tolerant, 11 had intermediate tolerance, and 2 were sensitive. Fish community analysis revealed dominance of 0.57, diversity of 2.04, evenness of 0.69, and richness of 2.72, indicating a diverse and stable fish community. The fish assessment index showed that the assessment class was B (average 62.5), which was higher than that of major streams of the Nakdong River (class C). For sustainable conservation of the Gudam Wetland, management strategies such as minimizing aggregate collection and preventing inflow of non-point pollutants are required.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Interannual and Seasonal Fluctuations of Nutrients, Suspended Solids, Chlorophyll, and Trophic Sate along with Other General Water Quality Parameters Near Two Intake Towers of Daechung Dam

  • Lee, Sun-Goo;Han, Jeong-Ho;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.492-502
    • /
    • 2010
  • The study objects were to analyze long-term and seasonal variations of nutrients (N, P), suspended solids, N:P ratios, algal chlorophyll, and trophic state along with general water quality parameters in four sampling sites including two intake tower sites supplying drinking water in Daechung Reservoir. For the analysis, we used water quality long-term data sampled during 1998~2007 by the Ministry of Environment, Korea. Interannual and seasonal trends in inflow and discharge near the intake tower facilities over the ten years were directly influenced by rainfall pattern. The distinct difference between wet year (2003) and dry year (2001) produced marked differences in water temperature, pH, dissolved oxygen, organic matter contents, nutrients, and these variables influenced algal biomass and trophic state. Values of TP varied depending on the year and locations sampled, but monthly mean TP always peaked during July~August when river inflow and precipitation were maxima. In contrast, TN varied little compared to TP, indicating lower influence by seasonal flow compared to phosphorus. The number of E. coli were highest in Site 2 (Chudong intake tower) and varied largely, whereas at other sites, the numbers were low and low variations. Contents of chlorophyll-${\alpha}$ (CHL), as an estimation of primary productivity, varied largely depending on the year and season. The maximum of CHL occurred at Muneu intake tower (S4) during 2006 when the precipitation and inflow were lowest. In contrast, another CHL peak was observed in Site 2 (Chudong intake tower) in 2006 when one of the largest typoons (Ewinia) occurred and river runoff were maximum. So the CHL maxima were associated with both wet year (high flow, high nutrient supply) and dry year (low flow, nutrient supply by littoral zone). Such conditions influenced trophic states, based on Trophic State Index of nutrients and CHL. Based on all analyses, we can provide some clues for management and protection strategies of two intake tower sites.