• Title/Summary/Keyword: river management flow

Search Result 421, Processing Time 0.019 seconds

Development and assessment of water management resilience of mid-small scale tributaries (지류 중소하천의 물관리 탄력성 평가지수 개발 및 평가)

  • Park, Jung Eun;Lee, Eul Rae;Lim, Kwang Suop
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Water Management Resilience Index (WMRI) was developed as a policy measure of adaptability to withstand water stresses and to set up water management strategies mainly in mid-small scale tributaries, and then evaluated on 117 sub-basins in South Korea. The index consists of 3 sub-indices such as vulnerability, robustness and redundancy sub-indices, each including indicators of 3 sectors: water use, flood mitigation, and river environment. Total number of indicators selected for the index was 31. Taking into account the stream order and control capability of river flow discharge, sub-basins were categorized into 3: 1 for mainstreams of lower large dams, 2 and 3 for tributaries, respectively without and with flow discharge regulation. As a result of the evaluation, resilience index scores in Category 2 and 3 are much lower than that of Category 1, especially with very poor score of redundancy. Although there was no significant difference between mainstream and tributaries in vulnerability and robustness sub-indices, results of redundancy sub-index in tributaries were lower than those in mainstream. Thus, it is conceived that the variety of water management schemes should be considered to improve their resilience in the face of future uncertainty. Addressing comprehensive stability of river basin against internal and external impacts, WMRI in this study can also be used for the prioritization of water management plans.

The method of period division and range setting for annual river discharge management (연중 하천유량 관리를 위한 기간 구분 및 관리범위 설정 방안)

  • Park, Tae Sun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Until now, the periods of river discharge management throughout a year are divided into flood and non-flood periods, and the ranges of discharges to be managed are broadly defined from drought discharge to flood discharge. In this study, using the long-term daily discharge data from 8 points of four major rivers, we propose a method of dividing the year into several periods with the homogeneous mean and dispersion of discharges. As a result of the study, the period of through a year was different depending on the point, but it could be divided into pre-flood period, flood period, and post-flood period. And the more subdivided the period, the more decreased the ratio of the maximum discharge to the minimum discharge. In addition, in order to ensure that the discharge for a year is more than the drought discharge and less than the flood discharge, to set the range of discharge management per period as the average flow ± standard deviation for each period is proposed.

Experiment and Assessment of Ascending Capability for Management of Exotic Fish Species (외래어종 관리를 위한 소상 실험 및 평가)

  • Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.265-278
    • /
    • 2016
  • In this study, an ascending capability experiment was performed with largemouth bass and bluegill, which are exotic fish species inhabiting (the freshwaters) in Korea. The experiment was performed by dividing the subject fish into four groups according to their size and at four flow rates for each group. The number of fish passing through a reference line was analyzed by recording videos, and their swimming and ascending capabilities were observed by the naked eye. The number of fish passing through the reference line did not include those returning downstream within five minutes due to the high flow rate. The flow rate used for the analysis was the mean of the flow rate values measured at the left bank, the right bank, and in the middle of the stream. The results showed that the number of exotic fish migrating upstream decreased as the flow rate increased, regardless of the species and size of the fish. The comparison between the fish species showed that the ascending capability of bass was higher than that of bluegill, but the difference was not significant when considering the difference in the size of the fish. In addition, the upper limit flow velocity allowing the ascending of the exotic fish species was 1.11 m/s, when considering the fish returning to the downstream after the upstream migration and experimental error. The results of the experiment may be used as fundamental data for the blocking of fish and the management of exotic fish species by means of a high flow rate current. Further experiments, verification, and monitoring may need to be conducted continuously to determine whether the fish are able to pass through the reference line at a high flow rate, when they attain a high or cruising velocity. Additionally, the reaction of the fish species should be investigated by considering the response to external forces as well as pressure differences due to the flow rate.

Urban Instream Flow Augmentation Using Reclaimed Water in Korea (하수처리수 재이용을 통한 도시하천 물순환 및 수질 개선)

  • Jee, Yong-Keun;Ahn, Jong-Ho;Lee, Jin-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.285-294
    • /
    • 2012
  • Current urban stream conditions and their restoration projects were investigated by surveying the urban stream management experts in 29 cities with high population density (more than 1,000person/$km^{2}$). The survey results showed that the ratio of covered urban streams decreased by 1.4% (from 14% to 12.6%) in the last 5 years through steady river restoration projects promoted by governments. Nonetheless, 36.3% of 369 urban streams surveyed still report stream depletion problems; therefore, more efforts to alleviate the problems caused by distorted water circulation of urban streams are still necessary. Water depletion in many local urban streams, unlike national rivers, is accelerated due to negligence in stream management, budget shortage, and other reasons. To prevent stream depletion, the use of reclaimed water is suggested as one of the prevention plans. When available amounts of reused sewage are estimated through actual available nationwide sewage discharges of each watershed and instream flow of stream, annual instream flow supply of 780 million $m^{3}$ is expected; 4.8% reduction in the pollution load of public sewer treatment facilities is expected; and the creation of new value through water reuse service is expected. Thus, it is important for the reviews of feasibility and alternatives of water reuse projects for flow augmentation to consider not only investment budget reductions, but also environmental aspects. Also it is necessary to provide the financial support of unified government with strict water quality management policy.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

A Two-dimensional Hydraulic Analysis Considering the Influence of River Inflow and Harbor Gate in the Bay (Harbor Gate와 유입하천의 영향을 고려한 만내의 2차원 수리해석)

  • Lee, Jae Joon;Lee, Hoo Sang;Shim, Jae Sol;Yoon, Jong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • In this study, when seawall or harbor gate is installed for coastal disaster prevention, a two-dimensional water analysis in the bay is carried out to consider the flood amount of river inflow and effect of harbor gate. The Yeongsan river and the port Mokpo area are selcected for the study region. Then, by analyzing the hydraulic characteristics of flood flow of the Yeongsan river, we analysed the compatibility of the results in the two-dimensional hydrodynamic model. A tw-odimensional water analysis were conducted for the four cases considering whether a harbor gate is installed or not, and whether the inland water boundary condition is considered or not, also with open sea boundary condition. The results of the two-dimensional water analysis shows that water level change near the port Mokpo area is mainly caused by the discharge of the estuary barrage of the Yeongsan river because the harbor gate was installed. In addition, it is revealed that the volume of reservoir created by the harbor gate and the estuary barrage is too much small compared to the volume of the discharge from the Yeongsan river. Therefore, when the harbor gate is installed in the open sea, we concluded that a flexible management between the harbor gate and the estuary barrage of the Yeongsan river is required. A initial water level of the bay and outflow from the harbor gate are proposed for disaster prevention in the coastal area of port Mokpo.

Development of Depth-averaged Mixing Length Turbulence Model and Assessment of Eddy Viscosity (수심평균 혼합거리 난류 모형의 개발 및 와점성계수의 평가)

  • Choi, Seung-Yong;Han, Kun-Yeun;Hwang, Jae-Hong
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.395-409
    • /
    • 2011
  • The objective of this study is to develop an accurate and robust two-dimensional finite element method for turbulence simulation in open channels. The model is based on Streamline Upwind/Petrov-Galerkin finite element method and Boussinesq's eddy viscosity theory. The method developed in the study is depth-averaged mixing length model which assumes anisotropic and local equilibrium state of turbulence. The model calibration and validation were performed by comparing with analytical solutions and observed data. Several numerical simulations were carried out, which examined the performance of the turbulence model for the purpose of sensitivity analysis. The uniform channels that appear horizontal flow and vertical flow were carried out. The model was also applied to the Han river was in for the applicability test. The results were compared with the observed data. The suggested model displayed reasonable flow distribution compare to the observed data in natural river flow. As a result of this study, the two-dimensional finite element model provides a reliable results for flow distribution based on the turbulence simulation in open channels.

Designing dam operations for better aquatic species' habitat and economic outcomes in a regulated river

  • Kang, Hyeongsik;Choi, Byungwoong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.823-833
    • /
    • 2019
  • This study presents the impact of natural flow patterns on downstream fish habitat and economic outcomes in the Dal Stream, Korea. The study reach is 3.35 km long, located downstream form the Goesan Dam. To assess such impact, this study performed physical habitat simulations. The River2D model was used for the computation of the flow and the HSI model for the habitat simulation. Two physical habitat variables, flow depth and velocity, were used. The Zacco platypus, Zacco temminckii, Coreoleuciscus splendidus, and Opsariichthys bidens were selected as the target species in the study area. Using the building block approach (BBA), the scenarios for the hydropeaking mitigation were presented. Scenario 1 and scenario 2 were proposed by using the magnitude - duration concept and averaged the hydrologic data over the each month, respectively. Simulation results indicated that the scenarios effects significantly increased by about 18.6% for the weighted usable area (WUA). In addition, hydroelectric power benefits with both scenarios were investigated. It was revealed that the change of storing and releasing water decreased by about 27% for hydroelectric power benefits. In order to increase economic benefits, the scenario was modified with the discharges corresponding to the hydropeaking condition except the flood season. As a result, the hydroelectric power benefits were almost the same, however the aquatic habitat for the target species increased by about 5%. The change of dam re-operations through natural flow patterns provides an opportunity to minimize environmental and economic benefits in order to balance water management.

An Assessment of Fish Habitat of Natural Fishway by Hydraulic Model Experiments and Numerical Analysis (수리모형실험과 수치해석을 통한 자연형어도의 어류서식처 평가)

  • Lee, Sung-Hyun;Oh, Kuk-Ryul;Cheong, Tae-Sung;Jeong, Sang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.317-329
    • /
    • 2012
  • It is increasing to make an efforts on preventing natural river environment and preserving natural river ecosystem as development is unavoidable. In the case of inconsistent river flow caused by reservoir development, fishway is an alternative to secure fish diversity and preserve existing river ecosystem but existing fishway was established without full study for their functions. In this study, hydraulic characteristics of natural fishway established on Beakje weir's right side were analyzed. The results show that the fishway has reasonable depth and velocity condition which inhabit condition is enough for a dominant species. For assessing the optimal design of fishway, the Weighted Usable Area (WUA) was calculated by using two dimensional numerical model under the ordinary flow condition. The comparison results for various pool widths in the fishway show that the designed width has maximum WUA for adult Zacco platypus but WUA is maximized with 1m wider pool width than designed width for spawning.

The Function or Urban River and Sustainable Regional Development : The Case of Kumho River (도시하천과 지속가능한 지역 발전 : 금호강을 중심으로)

  • Choi, Byung-Doo
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.4
    • /
    • pp.757-774
    • /
    • 2004
  • This paper is to reclassify systematically the functions of urban river: that is, water supply, land management, transportation and energy source as social and economic function; formation of geomorphic surface, water-side landscape, community constitution and boundary and separation between regions as spatial function; and drainage of waste water, purification, habitation, and weather regulation as ecological function. On the basis of this reclassification, it can be argued that the socio-economic functions (eg. water supply) of the river among the functions of the river have been strongly mobilized in the process of modernization, while the spatial function and ecological function of urban river have been ignored. The Kumho river which flows through Daegu and the adjacent area has made a great contribution to the modem development process of the river basin area, but as a result of a selective development of a specific function of the river, that is the social and economic function, it now suffers from the lack of instream flow and is deprived of its original functions with the water pollution and degradation. Moreover the Daegu region seems no longer possible to develop on the dependence of the river. In order to overcome this kind of social and environmental crisis, this paper is to suggest both some principles and main evaluating indicators to restore the original and comprehensive functions of the river, and important measures to make the co-evolution of the city and the river possible.

  • PDF