• Title/Summary/Keyword: river junction

Search Result 53, Processing Time 0.021 seconds

GIS-based Areal Distribution Ratios and Characteristics of Constituent Rocks with Geologic Ages and Rock Types in Jeonnam and Gwangju Areas (전남과 광주지역 구성암류의 GIS에 의한 지질시대별 암층별 분포율 및 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Cho, Deung-Lyong
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • To get the various data on geological information, distributional ratios and characteristics of constituent rocks with geologic ages and rock types were obtained by ArcGIS 10.1 program, digital geologic and geomorphic maps of 1:250,000 scale in Jeonnam and Gwangju areas. In the Jeonnam area, geologic ages can be largely divided into 7, in which their distribution ratios show decreasing trends in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown, Carbonifeorus-Triassic and Triassic, and the former fours make the most prevailing ratios of 94.80%. Rock types in the area can be assorted into 57 ones, in which major 7 ones occupy the dominant ratio of 71.68%. Among them, Kav (acidic volcanics+rhyolite and rhyolitic tuff) show much more distribution ratios than the others. It shows more aspects distributed in north, west, middle, east and south parts, especially in Sinan-Mogpo-Yeongam of west and Haenam of south parts in the area, respectively. On the other hand, geological ages in Gwangju area can be largely divided into 5, in which their distribution ratios show decreasing trends in the order of Jurassic, Quaternary, Cretaceous, Precambrian and Age-unknown, and the former fours occupy almost the whole ratio of 98.95%. Rock types in the area are 12 ones, in which major four ones make up the dominant value of 91.30%. Among them, Jurassic granites of the most dominant value are mostly occupied in the southwest-northeast part of the area. Next dominative Quaternary alluvium is mostly developed along the Yeongsan river, the Hwangryong river and their channel junction. And Yongdu and Donggye plains are well developed around the Yeongsan riverline, and channel junction of the Yeongsan and Hwangryong rivers in the area, respectively.

Evaluation of Groundwater Flow for the Kap-cheon Basin (갑천 유역의 지하수 유동 평가)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.431-446
    • /
    • 2007
  • Groundwater flow in a basin is greatly affected by many hydrogeological and hydrological characteristics of the basin. A groundwater flow model for the Kap-cheon basin ($area=648.3km^2$) in the Geum river basin was established using MODFLOW by fully considering major features obtained from observed data of 438 wells and 24 streams. Furthermore, spatial groundwater recharge distribution was estimated employing accurately calibrated watershed model developed using SWAT, a physically semi-distributed hydrological model. Model calibration using observed groundwater head data at 86 observation wells yielded the deterministic coefficient of 0.99 and the water budget discrepancy of 0.57%, indicating that the model well represented the regional groundwater flow in the Kap-cheon basin. Model simulation results showed that groundwater flow in the basin was strongly influenced by such factors as topological features, aquifer characteristics and streams. The streams in mountainous areas were found to alternate gaining and losing steams, while the streams in the vicinity of the mid-stream and down-stream, especially near the junction of Kap-cheon and Yudeong-cheon, areas were mostly appeared as gaining streams. Analysis of water budget showed that streams in mountainous areas except for the mid-stream and up-stream of Yudeong-cheon were mostly fed by groundwater recharge while the streams in the mid and down-stream areas were supplied from groundwater inflows from adjacent sub-basins. Hence, it was concluded that the interactions between surface water-groundwater in the Kap-cheon basin would be strongly inter-connected with not only streams but also groundwater flow system itself.

The Scale-dependent of Hydraulic Conductivity in Leaky Confined Aquifer with High Permeability at the Ttaan Isle, Gimhae City (김해 딴섬의 고투수성 누수 피압대수층에서 수리전도도의 규모종속효과)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kim, Byung-Woo;Kwon, Byung-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Pumping test was conducted to understand hydraulic conductivity for leaky confined aquifer with high permeability. Test aquifer was formed in $25{\sim}35\;m$ below ground surface at predetermined site of riverbank filtration which junction of Nakdong river and Milyang river in the Ttaan isle, Gimhae city, Korea Monitoring wells were located at intervals of 2 m and 5 m from pumping well in south-west direction (MW1 and MW2 wells) and northeast direction (MW3 and MW4 wells), respectively. Pumping test was continuously conducted for constant pumping rate of $2,500m^3/day$, hydraulic conductivity was estimated using AQTESOLV 3.5 program. Hydraulic conductivity were estimated to be $1.745{\times}10^{-3}m/sec$ for pumping well (PW), $2.452{\times}10^{-3}m/sec$ for between PW and MW1 wells, $2.161{\times}10^{-3}m/sec$ for between PW and MW2 wells, $2.270{\times}10^{-3}m/sec$ for between PW and MW3 wells and $2.591{\times}10^{-3}m/sec$ for between PW and MW4 wells. The function of hydraulic conductivity (K) as monitoring distance (d) were estimated to be logK = 0.0693logd - 2.671 for south-west direction (PW-MW1-MW2 line), logK = 0.0817logd - 2.655 for north-east direction (PW-MW3-MW 4 line). Scale exponent of hydraulic conductivity as test volume was estimated using Schulze-Makuch et al.(1999) method. Scale exponent of this aquifer was estimated to be 0.15. It means that test aquifer has very low heterogeneity. The radius of influence estimated using transmissivity, maximum groundwater level displacement, distance from pumping well and pumping rate during pumping test were 7.148 m for south-west direction and 6.912 m for north-east direction. The increasing rate of hydraulic conductivity from pumping well to maximum radius of influence were estimated to be 1.40 times for south-west direction and 1.49 times for north-east direction. Thus, heterogeneity of test aquifer was a little higher in north-east direction.