• 제목/요약/키워드: river flow

검색결과 2,061건 처리시간 0.046초

소유역 및 대유역 홍수유출모형의 적용 (Application of Surface Runoff-River flow Model to Small- and Large-Size Catchment Areas)

  • 유동훈
    • 한국수자원학회논문집
    • /
    • 제36권1호
    • /
    • pp.87-104
    • /
    • 2003
  • 지표면 유출과 하천 유출 통으로 구성된 동일한 홍수유출모형 SIRG-RS를 소유역과 대유역에 적용하였다. 지표면 유출로부터의 유입 방법, 하천 접합부에서의 계산방법, 급경사 산지하천에서의 에너지손실 계산 등에서 개선책을 강구하였다. 마찰력 산정을 위하여 레이놀즈수와 조고비의 함수인 지수형 마찰계수 산정식을 도입하였다. 또한 지수형 마찰계수 산정식은 실험자료뿐 아니라 최근 입수한 현장 관측자료를 사용하여 개선하였다. 개선된 모형은 대규모의 유역과 아주 작은 크기의 소유역에도 적용하였는데, 두 가지 경우 모두 관측자료와 비교하여 양호한 계산 결과를 얻었다.

감조하천에서 실측유속과 계산유속과의 관계식 (Relation between Measured and Calculated Velocities in a Tidal River)

  • 남궁돈;이진우;조용식
    • 대한토목학회논문집
    • /
    • 제31권6B호
    • /
    • pp.523-529
    • /
    • 2011
  • 감조하천은 조석의 영향을 받는 하천으로, 하루에 두 번 수위를 상승 및 하강시킨다. 감조하천에서는 홍수시 하천유속 보다 비홍수기 조석에 의한 유속이 구조물 설계에 보다 지배적인 인자가 될 수 있다. 본 연구는 한강 하류부 감조구간에서 비홍수기에 발생된 유속 및 수위 관측을 실시하고 수치해석의 검증자료로 활용하였다. 흐름해석을 위해 부정류 해석이 가능한 UNET모형을 이용하였다. 신곡수중보 아래 감조구간의 조도계수 추정을 위해 통계적인 방법이 사용되었다. 통계적 방법으로 실측수위와 계산수위 간의 불일치율을 이용하였다.

HEC-RAS 모형에 의한 감조하천구간 부정류 해석 및 세굴보호공 설계 (Unsteady Flow Analysis for the Design of Local Scour Protection by HEC-RAS(UNET) Model in the River Reach Affected by Tide)

  • 남궁돈;조두찬;윤광석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1138-1142
    • /
    • 2005
  • The tidal river is a river affected by tide, which causes the water level to rise and fall two times everyday periodically. The local velocity across the river could be very fast because of the cross-sectional characteristics of the river even though it's not a rainy season. Therefore extreme local scour could take place around hydraulic structures such as piers and caissons due to backward flow velocity. For the construction of pier foundation of Ilsan-bridge In the Han River, the field observations were performed to get the velocity and water level. The numerical analysis was performed by HEC-RAS(UNET). The relationship between measured maximum velocity and calculated mean velocity is achieved, which is used to estimate the velocity and water level as the construction is proceeding. Countermeasures for scour were designed with the results of the hydraulic analysis to avoid potential damage during construction work. According to the results of monitoring, the velocity increase after temporary road embankment was negligible, from which it is considered that the degradation of main channel compensated for the constriction of cross-section by embankment.

  • PDF

소수력발전입지의 수계별 설계변수 특성(II) (Design Parameters of Small Hydro Power Sites for River Systems(II))

  • 박완순;이철형
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.42-47
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites had some difference between the river systems. Especially, the specific design flow and specific output of SHP sites located on North Han river and Nakdong river systems had large difference compared with other river systems.

낙동강 주요 합류부에서의 동역학적 수리해석 (Hydrodynamic Analysis at Nakdong River Confluences)

  • 한건연;김지성;양승호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.908-911
    • /
    • 2004
  • The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers. In this study, two dimensional unite element model, SMS, is used to simulate a complex flow along with the sediment movements in the natural river. The RMA-2 model embeded in SMS is used to simulate flow phenomena and SED-2D model is employed to simulate sediment transport. The model is applied to the confluence zone of the Gam River and mouth of Nakdong River. For model calibration, the result of the unsteady flow analysis is compared with the Typhoon 'Rusa' data. In addition, the runoff analysis was conducted for the determination of the project flood and the flood forecasting. The simulation results presented the characteristics of two dimensional flow with velocity vector and flow depth. The sediment transport characteristics are shown in terms of sediment concentration as well as bed elevation change. Accordingly, the SMS model in this study turned out to be very effective tool for the simulation of the hydrodynamic characteristics under the various flow conditions and corresponding sediment transports in natural rivers.

  • PDF

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

낙동강 소수계별 유달부하량 산정 및 평가 (Computation and Assessment of Delivery Pollutant Loads for the Streams in the Nakdong River Basin)

  • 윤영삼;유재정;김문수;이혜진
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.277-287
    • /
    • 2006
  • Production loads of the contaminants near the Nakdong-river are, BOD : $1,006ton{\cdot}day^{-1}$, TN : $117ton{\cdot}day^{-1}$, and TP : $21ton{\cdot}day^{-1}$. Among the sources of contamination, the biggest contribution to the production load was shared by the human population, which maintains 40.7% of BOD, 44.2% of TN, and 52.5% of TP production. Similarly, among the sources of discharge load, the human population contributed 45.0% of BOD, 34.5% of TN, and 45.8% of TP. Results of flow investigation in 2001 and 2002 indicate that among the side streams, Nam-river showed the greatest average flow. In case of main stream flow, it was increased in the downstream due to the increase of the influents from the side streams. In case of BOD, COD, TOC and SS, high values were detected at Keumho-river where industrial wastewater was discharged as high level concentration. In case of the main stream, Koryoung point where direct influence of Keumho-river and Seongseo industrial complex is evident showed high BOD, COD and TOC. Oxidized nitrogen compounds and total nitrogen showed similar patterns of BOD, COD, and TOC. Especially, nitrate nitrogen was relatively high at all points. However, in case of Chlorophyll-a, relatively high values were observed at mid- and downstream areas such as Koryoung, Namjee, Soosan, Moolkeum and Hakooeun. This could be caused by the slow flow rate and the abundant nutrient salts attributed by the side streams. Relatively better water quality was observed in 2002 when the flow was relatively abundant than that in 2001. Results of investigation during 2001-2002 showed that delivery load increased as the flow reaches downstream. In 2001, delivery loads at the downstream Soosan-bridge were BOD $22,152ton{\cdot}day^{-1}$, COD $45,467ton{\cdot}day^{-1}$, TN $22,062ton{\cdot}day^{-1}$, TP $926ton{\cdot}day^{-1}$. Delivery loads in 2002 were increased due to the increase of the rainfall. They are BOD $25,876ton{\cdot}day^{-1}$, COD $64,200ton{\cdot}day^{-1}$, TN $41,101ton{\cdot}day^{-1}$, and TP $1,362ton{\cdot}day^{-1}$.

수공구조물이 하천환경에 미치는 영향에 관한 연구(I) : 수리학적특성 (A Study on Effects of Hydraulic Structure on River Environment(I) : Hydraulic Characteristics)

  • 안승섭;최윤영;이수식
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the analysis and examination of stream variation conditions and riverbed variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when design flow is yielded. Firstly, in case of removal the existing sediment protection reservoir, the hydraulic variation characteristics like depth drop due to removal of the sediment protection reservoir are thought of little because it is examined that depths drop with about 0.01m and 0.01~0.56m when low flow is yielded and design flood yielded, respectively. Nextly, as the examination result of the variation characteristics of flow velocity in case of removal the existing sediment protection reservoir, it is thought that the concern about riverbed erosion is not serious according to the analyzed result as the mean velocity of the channel section where the velocity varies in case of removal the sediment protection reservoir is about 0.07~1.36m/s when low flow is yielded, and is about 1.02~2.41m/s when design flood is yielded despite riverbed erosion is concerned as it is examined that flow velocity is getting increase as about 0.01m/s when low flow is yielded and about 0.01~0.44m/s when design flood is yielded. Lastly, from the prediction result of riverbed variation for each flow amount condition before and after removal the sediment protection reservoir, it is known that the variation range of riverbed is nearly constant when flow amount of the channel exceeds a specific limit as it is analyzed that the more flow amount, the more erosion and sediment in the channel section of down stream part of the sediment protection reservoir and the sediment protection reservoir~Samho-gyo, and the variation ranges according to flow amount between flood condition and design flood condition have little difference in the channel section of the upstream of Samho-gyo.

하상오염물 제거에 의한 수질개선효과 수치모델링 (Numerical Simulation of Water Quality Enhancement by Removal of Contaminated Bed Material)

  • 이남주
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.349-357
    • /
    • 2011
  • This study has an objective to estimate effect on water-quality enhancement by removal of contaminated river-bed material using a two-dimensional numerical modeling in the Seonakdong River, the Pyunggang River and the Maekdo River. RMA2 and RMA4 models were used for flow and contaminant transport simulation, respectively. After the analysis of the effects of flow restoration plan for the Seonakdong River system made by Lee et al (2008), simulation have been performed about scenarios which contains operations of the Daejeo Gate, the Noksan Gate, the Makdo Gate (on planning), and the Noksan Pumping Station. Because there is no option for elution from bed sediment in the RMA4 model, a simple technique has been used for initial condition modification for elution. The analyses revealed that the effect on water quality improvement due to dredging of bed sediment seemed to be less than 10 % of the total effect. The most efficient measure for the water quality improvement of the river system was the linked operation of water-gates and pumping station.

HEC-RAS 2D 모형을 이용한 임진강 초평도 식생이 흐름에 미치는 영향 분석 (Analysis of the vegetation effects on the flow in Chopyeong Island of the Imjin River using a HEC-RAS 2D model)

  • 이두한;이동섭
    • 한국수자원학회논문집
    • /
    • 제56권9호
    • /
    • pp.575-586
    • /
    • 2023
  • 하천 식생은 하천 생태계의 서식처 제공과 하안의 물리적 안정 등의 중요한 기능을 한다. 그러나 조도계수와 항력의 증가로 홍수 피해 가중 등의 악영향을 미치기도 한다. 하천 식생 관리는 홍수와 생태 관리의 균형점을 찾는다는 점에서 매우 중요하다. 그러나 식생이 하천에 미치는 영향에 대해서는 아직도 불확실한 것이 많다. 본 연구에서는 식생이 흐름이 미치는 영향을 분석하기 위하여 임진강 초평도 구간을 대상으로 식생 조도 설정에 따른 흐름 양상을 2차원 부정류 모형을 통해 분석하였다. HEC-RAS 2D 모형에 의한 2차원 흐름 해석 결과에 의하면 초평도 식생 조도에 따라 임진강 만곡부의 유속 분포가 크게 영향을 받는 것으로 나타났다. 현재와 같이 초평도 만곡부 외측에 홍수시에 주흐름이 형성되는 것은 초평도의 목본과 초본의 영향으로 판단된다. 초평도 전체에 목본류가 분포하면 만곡부 외측의 유속이 더욱 강하게 나타날 것으로 예상된다. 하천의 식생은 단순히 수위를 상승시키는 영향만 발생시키는 것이 아니라 유속 분포 변화를 유발할 수 있음을 확인하였다.