• Title/Summary/Keyword: river channel

Search Result 774, Processing Time 0.02 seconds

Characteristics of Geomorphological Surface and Analysis of Deposits in Fluvial Terraces at Upper Reach of Soyang River (소양강 상류 하안단구의 지형면 특성과 퇴적물 분석)

  • 이광률
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.1
    • /
    • pp.27-44
    • /
    • 2004
  • Upper reach of Soyang River at the northernmost area around Taebaek Mountains in South korea is profitable area to understand paleo-environment during the Quaternary such as tectonic process and climate change in the Korean Peninsula. This study explained paleo-environment affect to channel development by geomorphic distribution and characteristics of terrace surfaces, and analysis of deposits at 58 fluvial terraces in upper reach of Soyang River. Fluvial terraces were classified from T1 to T6. Most terraces are distributed on the point bar in meandering channel and one side along river valley. Terraces tend to decrease in number and superficial dissection rate to be higher and channel slope to be steeper if it takes long time from T1 to 6. The paleo-channel of Soyang River is supposed to be stronger meandering in period of T2 than T3. The weathering rind of gravel is generally thicker in older terrace, however, differs by contents of water and air in deposits. Based on the data of stratigraphy, grain size analysis, pollen analysis and rubification index in deposit, formation age of T5 terrace in Soyang River are estimated in MIS(Marine Oxygen Isotope Stage) 10, and T2 terrace are estimated in MIS 6.

Numerical Modeling for Region of Freshwater Influence by Han River Discharge in the Yeomha Channel, Gyeonggi Bay (경기만 염하수로에서의 한강 유량에 따른 담수 영향범위 수치모델링)

  • Lee, Hye Min;Song, Jin Il;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.148-159
    • /
    • 2021
  • This study estimates the region of freshwater influence (ROFI) by Han River discharge in the Yeomha channel, Gyeonggi Bay. A 3-D numerical model, which is validated for reproducibility of variation in current velocity and salinity, is applied in Gyeonggi Bay. Distance of freshwater influence (DOFI) is defined as the distance from the entrance of Yeomha channel to the point where surface salinity is 28 psu. Model scenarios were constructed by dividing the Han River discharge into 10 categories (200~10,000 m3/s). The relation equation between freshwater discharge and DOFI was calculated based on performing a non-linear regression analysis. ROFI in Yeomha channel expands from the southern sea area of Ganghwa-do to the northern sea area of Yeongheung-do as the intensity of Han River discharge increases. The discharge and DOFI are a proportional relationship, and the increase rate of DOFI gradually decreases as discharge increases. Based on the relation equation calculated in this study, DOFI in the Yeomha channel can be estimated through the monthly mean Han River discharge. Accordingly, it will be possible to respond and predict problems related to damage to water quality and ecology due to rapid freshwater runoff.

Sedimentary Environment Change in Mid-channel Bar of the Lower Geum River Using Multi-temporal Satellite Data (다중시기 영상자료를 이용한 금강하류의 하중도 퇴적환경 변화)

  • Hong, Ki-Byung;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2009
  • This study aims to analyze the sedimentary environment change in mid-channel bar of the lower Geum river basin after the construction of the estuary barrage using multi-temporal satellite data and GIS. The sedimentary environment changes were observed in mid-channel bar areas. The mid-channel bar F was found to have been newly formed for 10 years(1996-2006), whereas the mid-channel bar B located between mid-channel bar A and C has disappeared by erosion during the same periods. When examined by section, the areas of the mid-channel bar in the upper stream section from the Yipo's reference point generally increased due to the prevailing sedimentary environments, and those of the downstream section decreased where corrosive environments are dominant. In ternms of the centroid movement, the mid-channel bars grew up toward the downstream by switching erosion and accumulation, as sedimentation was prevailing in the downstream area of mid-channel bars and corrosion was dominant in the upper stream. Through grain size analysis, the study areas are divided into three sections according to the average grain size. In Section I, the mid-channel bars were formed as a result of sedimentary process of tides in the past. In Section II, the mid-channel bars were formed partly through the sedimentary process of rivers although the sedimentary process of tides is prevailing. In Section III, the mid-channel bars were formed mainly through the sedimentary process of rivers, even if it showed the sedimentary process of tides in the past.

An Analysis of Ecological Habitat Characteristics in the Nonsan Stream and Yanghwa Stream (논산천과 양화천 수계 내 하천 생물서식처의 특성 분석)

  • Ahn, Tae-Woong;Ahn, Hong-Kyu;Chun, Seung-Hoon;Choi, Jun-Kil;Ha, Sung-Ryong;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.127-140
    • /
    • 2010
  • This study investigates the relation between the location of a habitat and the ecological connections according to the habitat type in the riparian zone at the Nonsan Stream and Yanghwa Stream. Stream habitat is classified into nine types for the aquatic insects and fish. For vegetation and birds, habitat is classified into two types of medium-scale streams, including both physical and chemical streams are analyzed accordingly. Nowadays, The fundamental goal of the river environment restoration enterprise is the rehabilitation or the restoration of the characteristic the river scenic or environment. For instance, The Channel habitats which has physical nature environment such as flat, speedy rapids, or closed-channel wetland, pool are constructed by artificial, Consequently, make them autogenesis smoothy eco-environment. However, the river environment are controlled not only physical environment, but it also need reasonable the quality of the water to compose smoothly. Finally, understanding what influence are effecting on physical habitat environment which are made by natural factors to water quality are very important factor for the river environment restoration enterprise Therefore, In this research, we are targeting to a basin to investigate the environment of the physical channel habitat and evaluate the changing of the water quality. This results will be a important characteristic that can judge the physical habitat and reciprocality connected to the water quality or adequacy of restoration technology. Therefore in this study, as a step to quantify functions and values of habitats and definite factors to perform habitat, we selected a representative stream of sand-stream, gravel-stream to classify habitat characteristics and quantified the physical, chemical, biological characteristics.

A Review and Understanding of Stream Corridor Restoration (수변(水邊) 복원(復元)의 이해와 외국의 관련 가이드라인의 검토)

  • Woo, Hyo-Seop;Kim, Seong-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.126-144
    • /
    • 2000
  • The river environment of many streams in Korea has been deteriorated through the rapid industrialization and urbanization since the early 1960s. Deterioration includes single-purpose channel works for flood control and dense riparian land uses such even as the covering of the channel, as well as water pollution. As a result, many streams have lost their precious river environment such as ecological habitat, river friendliness and riparian scenery. In the early 1990s, however, the necessity of restoring those channelized streams was felt among the river engineers as well as environmentalists in Korea. This article describes a summary of the literature review of the stream restoration guidelines and relevant publication including those published in Japan, Europe and USA. A special focus is on the Stream Corridor Restoration, which was recently in the USA in 1998. First, the meaning and background of stream restoration is reviewed. Last, a draft of the contents of the stream restoration guideline, which is being developed by the authors and their colleagues, is briefly introduced.

  • PDF

Tidal Current and Suspended Sediment Transport in the Keum Estuary,West Coast of Korea (錦江 鹽河口에서의 潮流와 浮游堆積物 이동)

  • 오임상;나태경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.147-162
    • /
    • 1995
  • The circulation due to tidal current and river discharge, and the associated suspended suspended sediment transport in macrotidal Keum Estuary, were studied through a series of field measurements of tidal currents and suspended sediment concentration at three anchored stations from 1990 through 1992. From the measurements, the following results were obtained. At the seaward entrance of the estuary, the veritical profiles of the ebb and flood currents were almost symmetric. At the southern channel the flood current was dominant in the whole water column, but in the northern channel the ebb current was dominant in the surface and bottom layers and the flood current was dominant in the intermediate layer. The maximum velocity of the tidal current in the southern channel was 174 cm/s during flood tide in the intermediate layer. The maximum velocity, 148 cm/s in the northern channel also appeared during flood tide in the intermediate layer. However, in the surface and bottom layers, the maximum velocities were 110.6 cm/s during ebb tide and 92.1 cm/s during flood tide, respectively. The type of the Keum Estuary can be categorized to 'Type 3' of Hansen and Rattray's scheme. The water column of the estuary during the flood tide becomes stratified, and after high water the ebb current reduces the density difference and the water column becomes turbulent. The lower layer of the water column is generally turbulent. The largest sediment flux 20.61 ton/s was found in the southern channel during flood current in the lowest river discharge (May, 1991), while the smallest flux, 0.65 ton/s in the northern channel in the lowest tidal range (July, 1992). The stronger bottom shear velocity for the present study area seems to erode the bottom sediments during the flood tide, and the relatively long duration of the ebb tide to transport the suspended sediments. Under normal river discharge conditions, the suspended sediments are transported mainly through the southern channel. However, under high river discharge condition the suspended sediment transport is dominant through the northern channel.

  • PDF

A Study on Effects of Hydraulic Structure on River Environment(II) : Water Quality and Ecological Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(II) : 수질 및 생태학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study examined the water quality variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when low flow is yielded. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the comparison of stream variation conditions(depth, velocity, and etc.) and riverbed variation characteristics with ecological depth condition of Taehwa-river's channel for each representative species of fish and examination those. Firstly, from the examination result of water quality when low flow is yielded before and after removal of the sediment protection reservoir for problems about water quality of river due to flow amount decrease in river, it is found that DO decreases about 0.78~0.86ppm at the lower stream of Myeongchon-gyo, and BOD decreases about 0.06~0.24ppm from right upper stream to the direction of estuary when the sediment protection reservoir is removed. It is known from the above that there is some improvement of water quality from the lower stream of Taehwa-gyo to the estuary in case of removal the sediment protection reservoir. Nextly, it is thought that the effects on ecosystem due to water depth and draw down in channel is not serious on the basis of the examination of water quality analysis result according to removal of sediment protection reservoir and hydraulic depths for reservation of ecosystem, these are 10~40cm for breeding season, 10~50cm for fry period, and 10~100cm for adult period of the representative species of fish in Korea.

A Study on Effects of Hydraulic Structure on River Environment(I) : Hydraulic Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(I) : 수리학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the analysis and examination of stream variation conditions and riverbed variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when design flow is yielded. Firstly, in case of removal the existing sediment protection reservoir, the hydraulic variation characteristics like depth drop due to removal of the sediment protection reservoir are thought of little because it is examined that depths drop with about 0.01m and 0.01~0.56m when low flow is yielded and design flood yielded, respectively. Nextly, as the examination result of the variation characteristics of flow velocity in case of removal the existing sediment protection reservoir, it is thought that the concern about riverbed erosion is not serious according to the analyzed result as the mean velocity of the channel section where the velocity varies in case of removal the sediment protection reservoir is about 0.07~1.36m/s when low flow is yielded, and is about 1.02~2.41m/s when design flood is yielded despite riverbed erosion is concerned as it is examined that flow velocity is getting increase as about 0.01m/s when low flow is yielded and about 0.01~0.44m/s when design flood is yielded. Lastly, from the prediction result of riverbed variation for each flow amount condition before and after removal the sediment protection reservoir, it is known that the variation range of riverbed is nearly constant when flow amount of the channel exceeds a specific limit as it is analyzed that the more flow amount, the more erosion and sediment in the channel section of down stream part of the sediment protection reservoir and the sediment protection reservoir~Samho-gyo, and the variation ranges according to flow amount between flood condition and design flood condition have little difference in the channel section of the upstream of Samho-gyo.

Estimation of Sediment Transport and Long-term Prediction of Riverbed Elevation Changes in Yangon River (양곤강 퇴적물 이동 및 장기 하상변화율 측정)

  • Htet, Salaing Shine;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.450-457
    • /
    • 2019
  • Sedimentation is a common problem for river ports. But its intensity depends on the rate of sedimentation, channel shape and size, hydrodynamic behavior of the river and the importance of the port. High sedimentation rate in Yangon River has become one major issue for Myanmar as her largest port is located on the Yangon riverbank. As a result of the high sedimentation rate, shallow water area near the confluence of Yangon River, Pazundaung Creek, and Bago River keeps blocking the navigation channel to the Yangon Port, which also limits the size of vessel calling to Yangon Port. Therefore, studies to understand sediment transport process in Yangon River are required because the economic development of Myanmar highly relies on the Yangon Port. This paper aims to calculate the sediment transport and to predict the riverbed elevation changes in Yangon River by using Bagnold (1966) theory. Calculation result shows that huge difference can be found in the bed load transport between the rainy season and dry season in Yangon River, and thus the sedimentation problem would become more severe in the dry season when the transported sediments are reduced. The estimated sedimentation rate in dry season indicates that the rate of riverbed level rise near the Yangon Port area is about 0.063 m per year, which would lead to approximately 3.15 m rise in the riverbed level in next 50 yrs, considering the same workload of dredging to maintain the navigation channel.

The Analysis of GIS DB for the Evaluation of Turbid Water Considering Spatial Characteristics of River Channel (하천의 공간적 특성을 고려한 탁수평가 GIS DB 분석)

  • Park Jin-Hyeog;Lee Geun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Andong and Imha reservoir adjoins each other, but turbid water shows too much different when it rains. The characteristics of geological rock in basin and agricultural area around river boundary are pointed out as the major reason of turbid water of Imha reservoir. This study analyzed rock type of topsoil layer using soil map by National Institute of Agricultural Science and Technology (NIAST). Among rock types, sedimentary rock affects on the occurrence of turbid water. In the analysis of sedimentary rock type, the distribution of sedimentary rock of Imha basin shows 1.87 times higher than that of Andong basin. Also, the distribution of sedimentary rock of Imha basin shows higher than that of Andong basin within 1,600m from river channel in according to the buffer zone of river boundary. And Agricultural area of Imha basin shows higher than that of Andong basin in analysis of land cover within 1,600 m from river channel. As this agricultural characteristics of Imha basin, cover management factor of Imha basin represents more higher that that of Andong basin.