• 제목/요약/키워드: risk prediction system

검색결과 321건 처리시간 0.026초

퍼지와 DEVS를 이용한 선박 충돌 위험 예측 모델 설계 (Design of the Model for Predicting Ship Collision Risk using Fuzzy and DEVS)

  • 이미라
    • 한국시뮬레이션학회논문지
    • /
    • 제25권4호
    • /
    • pp.127-135
    • /
    • 2016
  • 선박에 현대화된 다양한 항해장비들이 설치됨에도 불구하고 여전히 해양사고가 자주 일어나는데, 이런 사고의 주요 형태 중 하나가 충돌 사고이다. 우리나라 해양사고의 약 1/4이 충돌에 의한 사고이고, 이 중 대부분이 인적오류가 원인인 것으로 알려져 있다. 따라서, 항해사의 의사결정을 도울 수 있는 지능적인 지원 도구가 필요한데, 이와 관련하여 충돌위험을 추정하는 다양한 방식들이 꾸준히 소개되어 왔으며 충돌위험 상황에 대해 사람에게 친숙한 언어적 표현을 반영하여 추론하기 위해 퍼지를 활용한 연구 결과들이 많다. 이런 기존 연구들의 충돌위험도는 현재시점에서 선박들의 속도나 방향 상태가 유지되는 것을 기준으로 충돌위험도를 추정한다. 그러나, 실제 선박에서는 충분히 피항 가능 상황임에도 불구하고 충돌 위험으로 판단되어 잦은 경고를 울리는 시스템들에 대해 항해사들이 느끼는 불편함이 적지 않아 보조 장치들의 알람 기능을 꺼놓은 경우도 많은 것으로 알려져 있다. 이 연구는 선박들의 일반적인 피항 패턴을 반영한 가까운 미래 시점의 충돌위험도 예측에 관한 것으로서, 퍼지추론과 DEVS 형식론에 기반한 충돌 위험 예측 모델을 제안한다.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

Imaging-Based Versus Pathologic Survival Stratifications of Diffuse Glioma According to the 2021 WHO Classification System

  • So Jeong Lee;Ji Eun Park;Seo Young Park;Young-Hoon Kim;Chang Ki Hong;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.772-783
    • /
    • 2023
  • Objective: Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. Materials and Methods: This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-codeleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. Results: Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). Conclusion: Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.

R-Trader: 강화 학습에 기반한 자동 주식 거래 시스템 (R-Trader: An Automatic Stock Trading System based on Reinforcement learning)

  • 이재원;김성동;이종우;채진석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.785-794
    • /
    • 2002
  • 자동 주식 거래 시스템은 시장 추세의 예측, 투자 종목의 선정, 거래 전략 등 매우 다양한 최적화 문제를 통합적으로 해결할 수 있어야 한다. 그러나 기존의 감독 학습 기법에 기반한 거래 시스템들은 이러한 최적화 요소들의 효과적인 결합에는 큰 비중을 두지 않았으며, 이로 인해 시스템의 궁극적인 성능에 한계를 보인다. 이 논문은 주가의 변동 과정이 마르코프 의사결정 프로세스(MDP: Markov Decision Process)라는 가정 하에, 강화 학습에 기반한 자동 주식 거래 시스템인 R-Trader를 제안한다. 강화 학습은 예측과 거래 전략의 통합적 학습에 적합한 학습 방법이다. R-Trader는 널리 알려진 두 가지 강화 학습 알고리즘인 TB(Temporal-difference)와 Q 알고리즘을 사용하여 종목 선정과 기타 거래 인자의 최적화를 수행한다. 또한 기술 분석에 기반하여 시스템의 입력 속성을 설계하며, 가치도 함수의 근사를 위해 인공 신경망을 사용한다. 한국 주식 시장의 데이타를 사용한 실험을 통해 제안된 시스템이 시장 평균을 초과하는 수익을 달성할 수 있고, 수익률과 위험 관리의 두 가지 측면 모두에서 감독 학습에 기반한 거래 시스템에 비해 우수한 성능 보임을 확인한다.

질식사고 방지용 CO2 소화설비의 선박 적용성 (Applicability of CO2 Extinguishing System for Ships)

  • 하연철;서정관
    • 대한조선학회논문집
    • /
    • 제54권4호
    • /
    • pp.294-300
    • /
    • 2017
  • The offshore installations and ships are the structures most likely to be exposed to hazards such as hydrocarbon fire and/or explosion. Developing proactive measures to prevent the escalation of such events thus requires detailed knowledge of the related phenomena and their consequences. $CO_2$ extinguishing systems are extensively used for fire accidents of on-and offshore installations because of outstanding performance and low cost. There is, however, the risk of carbon dioxide system which enumerates many of the fatalities by suffocation associated with industrial fire protection requirements. Therefore, the aim of this study is to perform the prediction of fire suppression characteristics of the carbon dioxide system in realistic enclosed compartment area of ships and propose $CO_2$ extinguish fire fighting system for preventing suffocation accidents during fire fighting. According to CFD calculations, it can be observed and assessed that various fire profiles with $CO_2$ and $O_2$ mole fraction in the target enclosed compartment area are applicable within the proposed system. Additionally, the design of fire safety system of ships and offshore installations can utilize ventilation system and/or layout arrangement through the proposed system.

Prediction of Length of ICU Stay Using Data-mining Techniques: an Example of Old Critically Ill Postoperative Gastric Cancer Patients

  • Zhang, Xiao-Chun;Zhang, Zhi-Dan;Huang, De-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권1호
    • /
    • pp.97-101
    • /
    • 2012
  • Objective: With the background of aging population in China and advances in clinical medicine, the amount of operations on old patients increases correspondingly, which imposes increasing challenges to critical care medicine and geriatrics. The study was designed to describe information on the length of ICU stay from a single institution experience of old critically ill gastric cancer patients after surgery and the framework of incorporating data-mining techniques into the prediction. Methods: A retrospective design was adopted to collect the consecutive data about patients aged 60 or over with a gastric cancer diagnosis after surgery in an adult intensive care unit in a medical university hospital in Shenyang, China, from January 2010 to March 2011. Characteristics of patients and the length their ICU stay were gathered for analysis by univariate and multivariate Cox regression to examine the relationship with potential candidate factors. A regression tree was constructed to predict the length of ICU stay and explore the important indicators. Results: Multivariate Cox analysis found that shock and nutrition support need were statistically significant risk factors for prolonged length of ICU stay. Altogether, eight variables entered the regression model, including age, APACHE II score, SOFA score, shock, respiratory system dysfunction, circulation system dysfunction, diabetes and nutrition support need. The regression tree indicated comorbidity of two or more kinds of shock as the most important factor for prolonged length of ICU stay in the studied sample. Conclusions: Comorbidity of two or more kinds of shock is the most important factor of length of ICU stay in the studied sample. Since there are differences of ICU patient characteristics between wards and hospitals, consideration of the data-mining technique should be given by the intensivists as a length of ICU stay prediction tool.

Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

  • Kim, Kwang-Yon;Shin, Seong Eun;No, Kyoung Tai
    • Environmental Analysis Health and Toxicology
    • /
    • 제30권sup호
    • /
    • pp.7.1-7.10
    • /
    • 2015
  • Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations.

On the Application of CFD Codes for Natural Gas Dispersion and Explosion in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Choung, Choung-Ho;Park, Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.946-956
    • /
    • 2011
  • The main objectives of this study are to analyze the leaked gas dispersion and quantify the potential overpressures due to vapor cloud explosions in order to identify the most significant contributors to risk by using Computational Fluid Dynamics (CFX & FLACS) for gas fuelled ships. A series of CFD simulations and analyses have been performed for the various gas release scenarios in a closed module, covering different release rates and ventilating methods. This study is specially focused on the LNG FGS (Fuel Gas Supply) system recently developed for the propulsion of VLCC crude oil carriers by shipyards. Most of work presented is discussed on the gas dispersion from leaks in the FGS room, and shows some blast prediction validation examples.

산사태 예측을 위한 NCAM-LAMP 강수 및 토양수분 DB 구축 (Construction of NCAM-LAMP Precipitation and Soil Moisture Database to Support Landslide Prediction)

  • 소윤영;이수정;최성원;이승재
    • 한국농림기상학회지
    • /
    • 제22권3호
    • /
    • pp.152-163
    • /
    • 2020
  • 실제적인 산사태 대응조치 단계 이전에 산사태위험지수를 통하여 산사태 발생 위험도를 모니터링하고 예측하기 위하여, LAMP의 고해상도 강우와 토양수분 예측 자료를 DB화 하고, 산사태 연구자들의 연구대상 지역에 적합한 지도 투영법과 공간해상도로 변환하는 절차를 ArcGIS를 이용하여 마련하였다. 이를 위하여 ERA5 재분석 강수와 농촌진흥청 10m 깊이 토양수분자료를 이용하여 LAMP 모델 강수 및 토양수분 자료를 정량적 그리고 정성적으로 평가하여 모델의 특성을 파악하였다. 또한, LAMP 강우, 토양수분, 증발산 등의 결과 자료를 10m 초고해상도 ArcGIS 포맷 자료로 변환하는 과정을 실무적으로 상세히 기술하여, 국내 지역에서 WRF 모델의 NetCDF 자료를 ArcGIS로 이용자들이 손쉽게 변환할 수 있도록 기술적 편의를 제공하였다.