• Title/Summary/Keyword: risk prediction

Search Result 1,085, Processing Time 0.024 seconds

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

Lung Cancer Risk Prediction Method Based on Feature Selection and Artificial Neural Network

  • Xie, Nan-Nan;Hu, Liang;Li, Tai-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10539-10542
    • /
    • 2015
  • A method to predict the risk of lung cancer is proposed, based on two feature selection algorithms: Fisher and ReliefF, and BP Neural Networks. An appropriate quantity of risk factors was chosen for lung cancer risk prediction. The process featured two steps, firstly choosing the risk factors by combining two feature selection algorithms, then providing the predictive value by neural network. Based on the method framework, an algorithm LCRP (lung cancer risk prediction) is presented, to reduce the amount of risk factors collected in practical applications. The proposed method is suitable for health monitoring and self-testing. Experiments showed it can actually provide satisfactory accuracy under low dimensions of risk factors.

A prediction model of low back pain risk: a population based cohort study in Korea

  • Mukasa, David;Sung, Joohon
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.153-165
    • /
    • 2020
  • Background: Well-validated risk prediction models help to identify individuals at high risk of diseases and suggest preventive measures. A recent systematic review reported lack of validated prediction models for low back pain (LBP). We aimed to develop prediction models to estimate the 8-year risk of developing LBP and its recurrence. Methods: A population based prospective cohort study using data from 435,968 participants in the National Health Insurance Service-National Sample Cohort enrolled from 2002 to 2010. We used Cox proportional hazards models. Results: During median follow-up period of 8.4 years, there were 143,396 (32.9%) first onset LBP cases. The prediction model of first onset consisted of age, sex, income grade, alcohol consumption, physical exercise, body mass index (BMI), total cholesterol, blood pressure, and medical history of diseases. The model of 5-year recurrence risk was comprised of age, sex, income grade, BMI, length of prescription, and medical history of diseases. The Harrell's C-statistic was 0.812 (95% confidence interval [CI], 0.804-0.820) and 0.916 (95% CI, 0.907-0.924) in validation cohorts of LBP onset and recurrence models, respectively. Age, disc degeneration, and sex conferred the highest risk points for onset, whereas age, spondylolisthesis, and disc degeneration conferred the highest risk for recurrence. Conclusions: LBP risk prediction models and simplified risk scores have been developed and validated using data from general medical practice. This study also offers an opportunity for external validation and updating of the models by incorporating other risk predictors in other settings, especially in this era of precision medicine.

Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

  • Choi, Sungkyoung;Bae, Sunghwan;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.138-148
    • /
    • 2016
  • The success of genome-wide association studies (GWASs) has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the "large p and small n" problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN). We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC) for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes.

Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model

  • Chen, Liang;Yu, Liang;Ou, Jianchun;Zhou, Yinbo;Fu, Jiangwei;Wang, Fei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.73-82
    • /
    • 2020
  • With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA - based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk.

A PROFIRABILITY MODEL BASED ON PRIMARY FACTOR ANALYSIS IN THE EARLY PHASE OF HOUSING REDEVELOPMENT PROJECTS

  • Kyeong-Hwan Ahn;U-Yeong Gim;Jong-Sik Lee;Won Kwon;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.497-501
    • /
    • 2013
  • An important decision-making element for the success of housing redevelopment projects is a prediction of the profitability of redevelopment. Risk factors influencing profitability were deduced through a review of the literature about profitability and a risk analysis developed by a survey of maintenance projects. In addition, a profitability prediction depending on the analysis of risk factors is necessary to judge the business feasibility of a project in the planning stages. A profitability prediction model of management and disposal method, which is calculated by proportional rate and which helps estimate contributions to profitability, is proposed to prevent difficulties in business development. The proposed model has the potential to prevent interruptions, reduce the length of projects, generate cost savings, and enable rational decision-making during the project period by allowing a judgment of profitability at the planning stage.

  • PDF

Feature selection-based Risk Prediction for Hypertension in Korean men (한국 남성의 고혈압에 대한 특징 선택 기반 위험 예측)

  • Dashdondov, Khongorzul;Kim, Mi-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.323-325
    • /
    • 2021
  • In this article, we have improved the prediction of hypertension detection using the feature selection method for the Korean national health data named by the KNHANES database. The study identified a variety of risk factors associated with chronic hypertension. The paper is divided into two modules. The first of these is a data pre-processing step that uses a factor analysis (FA) based feature selection method from the dataset. The next module applies a predictive analysis step to detect and predict hypertension risk prediction. In this study, we compare the mean standard error (MSE), F1-score, and area under the ROC curve (AUC) for each classification model. The test results show that the proposed FIFA-OE-NB algorithm has an MSE, F1-score, and AUC outcomes 0.259, 0.460, and 64.70%, respectively. These results demonstrate that the proposed FIFA-OE method outperforms other models for hypertension risk predictions.

Probability Prediction of Stability of Ship by Risk Based Approach (위험도 기반 접근법에 의한 선박 복원성의 확률 예측)

  • Long, Zhan-Jun;Jeong, Jae-Hun;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.42-47
    • /
    • 2013
  • Ship stability prediction is very complex in reality. In this paper, risk based approach is applied to predict the probability of a certified ship, which is effected by the forces of sea especially the wave loading. Safety assessment and risk analysis process are also applied for the probabilistic prediction of ship stability. The survival probability of ships encountering with different waves at sea is calculated by the existed statistics data and risk based models. Finally, ship capsizing probability is calculated according to single degree of freedom(SDF) rolling differential equation and basin erosion theory of nonlinear dynamics. Calculation results show that the survival probabilities of ship excited by the forces of the seas, especially in the beam seas status, can be predicted by the risk based method.

A Study on the Key Performance Factors of Passenger Airbag and Injury Risk Prediction Technique Development (동승석 에어백 핵심 성능 인자 및 상해위험도 예측 기법 개발에 대한 연구)

  • Park, Dongkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.130-135
    • /
    • 2013
  • Until now, passenger airbag design is based on the referred car design and many repetitive crash tests have been done to meet the crash performance. In this paper, it was suggested a new design process of passenger airbag. First, key performance factors were determined by analyzing the injury risk effectiveness of each performance factor. And it was made a relationship between injury risk and performance factor by using the response surface model. By using this one, it can be predicted the injury risk of head and neck. Predicted injury risk of optimal design was obtained through this injury risk prediction model and it was verified by FE analysis result within 18% error of head and 9% error of neck. It was shown that a target crash performance can be met by controlling the key performance factors only.