• Title/Summary/Keyword: risk of collision

Search Result 370, Processing Time 0.029 seconds

A Study on Intention Exchange-based Ship Collision Avoidance by Changing the Safety Domain

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.259-268
    • /
    • 2019
  • Even if only two ships are encountered, a collision may occur due to the mistaken judgment of the positional relationship. In other words, if an officer does not know a target ship's intention, there is always a risk of collision. In this paper, the experiments are conducted to investigate how the intention affects the action of collision avoidance in cooperative and non-cooperative situations. In non-cooperative situation, each ship chooses a course that minimizes costs based on the current situation. That is, it always performs a selfish selection. In a cooperative situation, the information is exchanged with a target ship and a course is selected based on this information. Each ship uses the Distributed Stochastic Search Algorithm so that a next-intended course can be selected by a certain probability and determines the course. In the experimental method, four virtual ships are set up to analyze the action of collision avoidance. Then, using the actual AIS data of eight ships in the strait of Dover, I compared and analyzed the action of collision avoidance in cooperative and non-cooperative situations. As a result of the experiment, the ships showed smooth trajectories in the cooperative situation, but the ship in the non-cooperative situation made frequent big changes to avoid a collision. In the case of the experiment using four ships, there was no collision in the cooperative situation regardless of the size of the safety domain, but a collision occurred between the ships when the size of the safety domain increased in cases of non-cooperation. In the case of experiments using eight ships, it was found that there are optimal parameters for collision avoidance. Also, it was possible to grasp the variation of the sailing distance and the costs according to the combination of the parameters, and it was confirmed that the setting of the parameters can have a great influence on collision avoidance among ships.

An Analysis of three-dimensional collision probability according to approaching objects to the KOMPSAT series (아리랑 위성들의 경향에 따른 및 3차원 충돌확률 분석)

  • Seong, Jae-Dong;Kim, Hae-Dong;Lim, Seong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.156-163
    • /
    • 2013
  • Collision probability is the most common method to measure the risk of space debris, it is widely used that two dimensional linear collision probability using the closest approach distance. This paper represents the characteristics of object that approach KOMPSAT 2, 3, 5 that have operated or will be operated by Korea. And more precise method than two dimensional linear collision probability, we analyzed the properties of three dimensional nonlinear collision probability using STK/Nonlinear Collision Probability Tool. Through this, efficiency of three dimensional nonlinear collision probability for KOMPSAT series satellites was investigated. The result represents that three dimensional nonlinear collision probability showed the precise outcome at a relative velocity of less than 350m/s. Also, KOMPSAT series satellites appeared to few low relative velocity approaches and showed low efficiency for the three dimensional nonlinear collision probability.

A Basic Study on Prediction Module Development of Collision Risk based on Ship's Operator's Consciousness (선박운항자 의식 기반 충돌 위험도 예측 모듈 개발에 관한 연구)

  • Park, Young-Soo;Park, Sang-Won;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.199-207
    • /
    • 2015
  • In ports of Korea, the marine traffic flow is congested due to a large number of vessels coming in and going out. In order to improve the safety and efficiency of these vessels, South Korea is operating with a Vessel Traffic Service System, which is monitoring its waters for 24 hours. However despite these efforts of the VTS (Vessel Traffic Service) officers, collisions are occurring continuously, the risk situation is analyzed that occurs once in about 20 minutes, the risk may be greater. It investigated to reduce these accidents by providing a safety standard for collision danger in a timely manner. Thus, this study has developed a risk prediction module to predict risk in advance. This module can avoid collision risk to adjust the speed and course of ship using a risk evaluation model based on ship operator's risk perspective. Using this module, the ship operators and VTS officers can easily be identified risks in complex traffic situations, so they can take an appropriate action against danger in near future including course and speed change. To verify the effectiveness of this module, this paper predicted the risk of each encounter situation and confirmed to be capable of identifying a risk changes in specific course and speed changes at Busan coastal water.

Ship Collision Avoidance System Considering Ship' Maneuverability

  • Lee, Seung-Keon;Surendran, S.;Im, Nam-Kyun;Hwang, Sung-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.95-100
    • /
    • 2006
  • A ship collision avoidance system is developed to control the avoidance action of ship actually and properly in wind forces. The 4-DOF maneuvering equations of motion ar derived to catty out the simulation of the motion of a ship, and the wind forces are considered as the external forces in the simulation. This study suggests a new avoidance system that could include the ship's maneuvering characteristics.

  • PDF

Design Vessel Selection of Maritime Bridges (해상교량의 설계선박 선정)

  • Lee Byung-Hwa;Bae Yong-Gwi;Lee Seong-Lo;Lee Gye-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.607-615
    • /
    • 2005
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the bridge. Method I in AASHTO LRFD bridge design specifications is a semi-deterministic analysis procedure for determining the design vessel. Method ll which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

  • PDF

A Study of the Depth Control System and the Collision Avoidance System for the Manta-type UUV (만타형 UUV의 심도제어와 충돌회피에 관한 연구)

  • Kim, Ju-Han;Lee, Seung-Keon;Lee, Sang-Eui;Bae, Cheol-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.447-452
    • /
    • 2008
  • In this paper, the automatic depth control system and the collision avoidance system of the Manta UUV have been established in vertical and horizontal plane. The PID control theory and the Fuzzy theory are adopted in this system. The 6-DOF MMG model had been established by theoretical calculations and captive model test results. The depth control simulation results have been fully presented. The collision risks of the UUV had calculated by the fuzzy theory with the virtual sonar system. Finally, the automatic depth control system and the collision avoidance simulation system of Manta UUV have been fully developed and simulated.

Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.625-635
    • /
    • 2022
  • High-rise buildings (HRBs) are considered one of the most common structures nowadays due to the population growth, especially in crowded towns. The lack of land in crowded cities has led to the convergence of the HRBs and the absence of any gaps between them, especially in lands with weak soil (e.g., liquefaction-prone soil), but then during earthquakes, these structures may be exposed to the risk of collision between them due to the large increase in the horizontal displacements, which may be destructive in some cases to the one or both of these adjacent buildings. To evaluate methods of reducing the risk of collision between adjacent twin HRBs, this research investigates three vibration control methods to reduce the risk of collision due to five different earthquakes for the case of two adjacent reinforced concrete (RC) twin high-rise buildings of 15 floors height without gap distance between them, founded on raft foundation supported on piles inside a liquefaction-prone soil. Contact pounding elements between the two buildings (distributed at all floor levels and at the raft foundation level) are used to make the impact strength between the two buildings realistic. The mitigation methods investigated are the base isolation, the tuned mass damper (TMD) method (using traditional TMDs), and the pounding tuned mass damper (PTMD) method (using PTMDs connected between the two buildings). The results show that the PTMD method between the two adjacent RC twin high-rise buildings is more efficient than the other two methods in mitigating the earthquake-induced pounding risk.

Variation of Beach Processes and Harbor Sedimentation in an Area of Large Tide (소형선박의 충돌위험도 분석을 위한 VTS 관제구역내 사례 연구)

  • Lee, Jin-Suk;Kim, Joo-Sung;Kim, Kwang-Il;Song, Chae-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.34-35
    • /
    • 2019
  • The objective of this study is to analyze the risk of collision accidents to the VTSOs(Vessel Traffic Service Operators) as small vessels are expanded for monitoring targets. For this purpose, the risks of accidents and quasi-incidents involving small ships in the VTS area were analyzed by the collision risk model(CoRI) from the view-point of VTSOs. In addition, by analyzing risk of whether or not small vessels are included in the monitoring target by CoRI, we will contribute to the preparation of a proper range of the vessel for monitoring taget through various case studies in the future.

  • PDF

Self-Collision Avoidance using Configuration Space Approach for Redundant Manipulators (Configuration Space 접근법을 이용한 여유 자유도 로봇의 자기 충돌 회피)

  • 문재성;정완균;염영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.321-324
    • /
    • 2003
  • There are two steps to solve the self-collision avoidance problems for redundant manipulators. First, all links are regarded as cylinders. and then the collisions should be checked among all pairs of the links. Between two cylinders. we can get the collision information derived from the concept or configuration space obstacle in real time. Therefore. it is possible to detect the links where collisions are likely in real time by setting the risk radius which is larger than actual radius. Second. the configuration control points (CCP) should be placed at the ends of the detected links. A cost function is the sum of the distances between the CCPs. To maximize the cost function means the links go far away each other without self-collisions.

  • PDF

A Study on the Coastal Navigation Safety by Navigational Risk Assessment Model (항해위험평가모델에 의한 연안역 항해의 안전 제고에 관한 연구)

  • KIM, Won-Ouk;KANG, Song-Jin;YOUN, Dae-Gwun;BAE, Jun-Young;KIM, Chang-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.201-208
    • /
    • 2017
  • The major cause of the marine accidents is the collision with a moving object such as ship as well as the fixed object such as breakwater. Therefore, the most effective way to reduce the maritime ship accidents is the prevention of collision. In order to decrease the collision, it is principle that the navigation officer promptly judges the dangerous condition and makes the quick response. The ship does not allow any object or other ships approaching its surrounded area called ship area so that it prevents the collision. Generally, the ship which has high speed or poor maneuvering capability shall be managed from the distance so that the other ship does not invade its ship domains(watching distance, blocking distance). Accordingly, this study sets the navigational risk assessment model by applying ship dynamic domain and collision judgement method considered ship length, speed and navigational capability. It also reviewed the validity of the model and evaluated the perilous water way (Maenggol Channel) and a curved route near Maenggol Channel. As a result, in case of a ship with 100m in length passing Maenggol Channel, it represented "warning" level before 1.5nm to the entry, "dangerous"level 0.75nm before to it and "very dangerous" level 0.5nm before to it and then "dangerous"level again up to the entry. Applying to the curved route also showed the same results as the Narrow Channel or Maenggol Channel. This analysis highly matched with the actual navigation results. In the future, this model will be useful for coastal navigation safety chart development and safety evaluation for route or port development. It also allows to evaluate the dangerous route or the best route by applying the result into ECDIS so that it will finally help to reduce the marine accidents. Eventually the model will be effective for the marine traffic simulation evaluation forced by Maritime Traffic Safety Act.