• Title/Summary/Keyword: risk evaluation metric

Search Result 13, Processing Time 0.023 seconds

A Framework for measuring query privacy in Location-based Service

  • Zhang, Xuejun;Gui, Xiaolin;Tian, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1717-1732
    • /
    • 2015
  • The widespread use of location-based services (LBSs), which allows untrusted service provider to collect large number of user request records, leads to serious privacy concerns. In response to these issues, a number of LBS privacy protection mechanisms (LPPMs) have been recently proposed. However, the evaluation of these LPPMs usually disregards the background knowledge that the adversary may possess about users' contextual information, which runs the risk of wrongly evaluating users' query privacy. In this paper, we address these issues by proposing a generic formal quantification framework,which comprehensively contemplate the various elements that influence the query privacy of users and explicitly states the knowledge that an adversary might have in the context of query privacy. Moreover, a way to model the adversary's attack on query privacy is proposed, which allows us to show the insufficiency of the existing query privacy metrics, e.g., k-anonymity. Thus we propose two new metrics: entropy anonymity and mutual information anonymity. Lastly, we run a set of experiments on datasets generated by network based generator of moving objects proposed by Thomas Brinkhoff. The results show the effectiveness and efficient of our framework to measure the LPPM.

SOA Vulnerability Evaluation using Run-Time Dependency Measurement (실행시간 의존성 측정을 통한 SOA 취약성 평가)

  • Kim, Yu-Kyong;Doh, Kyung-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.2
    • /
    • pp.129-142
    • /
    • 2011
  • Traditionally research in Service Oriented Architecture(SOA) security has focused primarily on exploiting standards and solutions separately. There exists no unified methodology for SOA security to manage risks at the enterprise level. It needs to analyze preliminarily security threats and to manage enterprise risks by identifying vulnerabilities of SOA. In this paper, we propose a metric-based vulnerability assessment method using dynamic properties of services in SOA. The method is to assess vulnerability at the architecture level as well as the service level by measuring run-time dependency between services. The run-time dependency between services is an important characteristic to understand which services are affected by a vulnerable service. All services which directly or indirectly depend on the vulnerable service are exposed to the risk. Thus run-time dependency is a good indicator of vulnerability of SOA.

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF