• Title/Summary/Keyword: risk assessment model

Search Result 1,071, Processing Time 0.026 seconds

Numerical simulation of turbulent flow around a building complex for development of risk assessment technique for windstorm hazards (강풍피해 위험성 평가를 위한 건물군 주위 유동해석)

  • Choi, Choon-Bum;Yang, Kyung-Soo;Lee, Sung-Su;Ham, Hee-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2737-2742
    • /
    • 2007
  • Strong wind flow around a building complex was numerically studied by LES. The original motivation of this work stemmed from the efforts to develop a risk assessment technique for windstorm hazards. Lagrangian-averaged scale-invariant dynamic subgrid-scale model was used for turbulence modeling, and a log-law-based wall model was employed on all the solid surfaces including the ground and the surface of buildings to replace the no-slip condition. The shape of buildings was implemented on the Cartesian grid system by an immersed boundary method. Key flow quantities for the risk assessment such as mean and RMS values of pressure on the surface of the selected buildings are presented. In addition, characteristics of the velocity field at some selected locations vital to safety of human beings is also reported.

  • PDF

The Study on RVSM Safety Assessment of Incheon FIR (인천 비행정보구역의 RVSM 안전성 평가 연구)

  • Shin, Dae-Won;Kim, Seung-Kyem
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of RVSM is to reduce vertical separation minima for aircrafts which operate between FL290- FL410 inclusive in regional airspace, and to increase airspace capacity by providing additional flight levels. In order to introduce RVSM, it is necessary to estimate quantitatively airborne collision risk due to the reduction in vertical separation minimum. In this study, the basic concept of RVSM safety assessment and Reich collision risk model are introduced and mid-air collision risk in Incheon FIR is estimated based on ICAO RVSM safety assessment technique and Reich Model.

  • PDF

Construction of Environmental Fate Model for Risk Assessment

  • Park, Shinai;Jeeyeun Han;Park, Jongsei
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.197-197
    • /
    • 2002
  • In terms of the risk assessment, qualitative and quantitative informations are needed to estimate the exposures of environmental pollutants, which may create risks, and those are the information according to the changes caused by the movement of substances from the pollutant and duration.(omitted)

  • PDF

Ecological Risk Assessment of 4,4'-Methylenedianiline (4,4'-Methylenedianiline의 환경매체별 위해성평가)

  • Hyun Soo Kim;Daeyeop Lee;Kyung Sook Woo;Si-Eun Yoo;Inhye Lee;Kyunghee Ji;Jungkwan Seo;Hun-Je Jo
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.

Collapse risk evaluation method on Bayesian network prediction model and engineering application

  • WANG, Jing;LI, Shucai;LI, Liping;SHI, Shaoshuai;XU, Zhenhao;LIN, Peng
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.121-131
    • /
    • 2017
  • Collapse was one of the typical common geological hazards during the construction of tunnels. The risk assessment of collapse was an effective way to ensure the safety of tunnels. We established a prediction model of collapse based on Bayesian Network. 76 large or medium collapses in China were analyzed. The variable set and range of the model were determined according to the statistics. A collapse prediction software was developed and its veracity was also evaluated. At last the software was used to predict tunnel collapses. It effectively evaded the disaster. Establishing the platform can be subsequent perfect. The platform can also be applied to the risk assessment of other tunnel engineering.

Risk Analysis System in Fuzzy Set Theory (퍼지 집합론을 이용한 위험분석 시스템)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.29-41
    • /
    • 1990
  • An assessment of risk in industrial and urban environments is essential in the prevention of accident and in the analysis of situations which are hazardous to public health and safety. The risk imposed by a particular hazard increases with the likelihood of occurence of the event, the exposure and the possible consequence of that event. In a traditional approach, the calculation of a quantitative value of risk is usually based on an assignment of numerical values of each of the risk factors. Then the product of the values of likelihood, exposure and consequences called risk score is derived. However vagueness and imprecision in mathematical quantification of risk are equated with fuzziness rather than randomness. In this paper, a fuzzy set theoretic approach to risk analysis is proposed as an alternative to the techniques currently used in the area of systems safety. Then the concept of risk evaluation using linguistic representation of the likelihood, exposure and consequences is introduced. A risk assessment model using approximate reasoning technique based on fuzzy logic is presented to drive fuzzy values of risk and numerical example for risk analysis is also presented to illustrate the results.

  • PDF

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

Quantitative Microbial Risk Assessment of Clostridium perfringens on Ham and Sausage Products in Korea (햄 및 소시지류에서의 Clostridium perfringens에 대한 정량적 미생물 위해평가)

  • Ko, Eun-Kyung;Moon, Jin-San;Wee, Sung-Hwan;Bahk, Gyung-Jin
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.118-124
    • /
    • 2012
  • This study was conducted for quantitative microbial risk assessment (QMRA) of Clostridium perfringens with consumption on ham and sausage products in Korea, according to Codex guidelines. Frame-work model as product-retail-consumption pathway composed with initial contamination level, the time and temperature in distributions, and consumption data sets for ham and sausage products and also used the published predictive growth and dose-response models for Cl. perfringens. The simulation model and formulas with Microsoft@ Excel spreadsheet program using these data sets was developed and simulated with @RISK. The probability of foodborne disease by Cl. perfringens with consumption of the ham and sausage products per person per day was estimated as $3.97{\times}10^{-11}{\pm}1.80{\times}10^{-9}$. There were also noted that limitations in this study and suggestion for development of QMRA in the future in Korea.

Development and Application of Radiological Risk Assessment Program RADCONS (방사능위해성평가 프로그램 RADCONS의 개발 및 적용)

  • Jeong, Hyojoon;Park, Misun;Hwang, Wontae;Kim, Eunhan;Han, Moonhee
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • RADCONS Ver. 1.0 (RADiological CONSequence Assessment Program) was developed for radiological risk assessment in this study. A Gaussian plume model was used to analyze the fate and transport of radionuclides released into the air in case of accidents. Both single meterological data and time series meterological data can be used in RADCONS. To assess the radiological risk of the early phase after an accident, ED (Effective Dose) estimated by both deterministic and probabilistic approaches are presented. These EDs by deterministic and probabilistic will be helpful to efficient decision making for decision makers. External doses from deposited materials by time are presented for quantifying the effects of mid and late phases of an accident. A radiological risk assessment was conducted using RADCONS for an accident scenario of 1 Ci of Cs-137. The maximum of ED for radii of 1,000 meters from the accident point was 8.51E-4 mSv. After Monte-Carlo simulation, considering the uncertainty of the breathing rate and dispersion parameters, the average ED was 8.49E-4, and the 95 percentile was 1.10E-3. A data base of the dose coefficients and a sampling module of the meteorological data will be modified to improve the user's convenience in the next version.

A Study on Quantitative Risk Assessment Method and Risk Reduction Measures for Rail Hazardous Material Transportation (철도위험물수송에 관한 위험도 정량화방안 및 경감대책 연구)

  • Lee, Sang Gon;Cho, Woncheol;Lee, Tae Sik
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • The object of this study is to develop a tool for quantifying risks related to the rail transportation of hazardous commodities and to present mitigation measures. In this study, the Quantitative Risk Assessment (QRA) is used as a risk analysis tool. Based on the previous explosion history (Iri explosion) and consideration of its high risk, Iksan-si is selected as a model city. The result, expressed as average individual risk for exposed people with various distance, indicates that the model city is considered to be safe according to the nuclear energy standard. Also, the mitigation measures are provided since Societal risk of Iksan-si is set within ALARP. Risk reduction measures include rail car design, rail transportation operation, demage spread control as well as derail prevention and alternative routes for reducing accident frequencies. Finally, it is expected to achieve high level of public safety by appling the risk reduction measures.

  • PDF