• 제목/요약/키워드: ripple

검색결과 2,281건 처리시간 0.035초

교류전동기의 주기적인 토크리플 보상알고리즘 (Compensation Algorithm for Periodic Torque Ripple of AC Motors)

  • 김병섭;최종우
    • 전력전자학회논문지
    • /
    • 제11권6호
    • /
    • pp.551-557
    • /
    • 2006
  • 교류 전동기는 전류의 측정오차와 데드타임(dead time) 등의 영향으로 전기각주파수에 동기된 주기적인 토크리플이 발생한다. 본 논문에서는 주기적인 토크리플 보상알고리즘을 제안한다. 보상기는 토크리플에 의해 생성된 속도리플의 크기을 관측하는 속도리플 관측기와 관측한 양으로 토크리플을 보상하는 토크리플 보상기로 나누어진다. 본 논문에서는 토크리플 보상기의 해석을 통해 정상상태에서 속도리플이 제거되고 새롭게 제안된 속도리플 관측기을 적용하여 성능이 향상됨을 보였다. 제안한 주기적인 토크리플 보상알고리즘에 의해 토크리플 성분이 보상됨을 모의 실험과 실험을 통해 검증하였다.

고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감 (Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection)

  • 권순오;이정종;이근호;홍정표
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구 (A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps)

  • 이상기
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF

동력조향용 압력평형형 베인펌프의 유량맥동 계측 (Measurement of Flow Ripple Generated by Balanced Vane Pumps in Automotive Power Steering Systems)

  • 김도태;김진
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.70-78
    • /
    • 2000
  • A balanced vane pump for the use of automotive power steering systems generates a flow ripple which is imposed upon the mean flow rate. The flow ripple interacts with the characteristics of the connected pipes, valves and steering gear in a complex manner to produce a pressure ripple, also known as fluid-borne noise. In order to reduce vibration level and produce quieter and more reliable power steering systems, it is important to measure the flow ripple produced by a pump with high accuracy and fast response. In this paper, the flow ripple generated by a vane pump in automotive power steering systems is measured by the remote instantaneous flow rate measurement method (RIFM) using hydraulic pipeline dynamics. In experiment, flow and pressure ripple wave forms are measured under various operating conditions. Also, the parameters affected upon the flow and pressure ripple are investigated by the frequency analysis.

  • PDF

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

교류전동기의 주기적인 부하토크에 의한 속도리플을 저감하는 속도제어기법 (Speed Control Method for Reduction Speed-ripple by Periodic Load Torque of AC Motors)

  • 정성민;김민;최종우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.409-410
    • /
    • 2012
  • Speed output has ripple such as periodic torque ripple if load torque with periodic ripple was injected in AC motor. In this paper, it is proposed method to reduce speed ripple through novel speed control method. It replaces algorithm to compensate torque ripple. Proposed method demonstrated through simulation using MATLAB SIMULINK.

  • PDF

리프팅 기법을 이용한 리플 제거 멀티레이트 제어기 설계 (Ripple Free Multirate Controller Design Using Lifting Technique)

  • 정동슬;조규남;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1040-1047
    • /
    • 2007
  • This paper presents ripple-free method that can occur in multirate controller design. The conventional multirate input controller has the problem that the ripple occurs in track-following because of chattering phenomenon in control input signal. In order to resolve the problem of rippling, it was proposed to eliminate the ripple phenomenon using feedforward compensator. This paper makes explains problems in conventional ripple-tree multirate controller and introduces a multirate controller design method applying lifting technique based on current estimators in condition space. Using the ripple-tree multirate controller, we show that chattering does not occur in the control input signal through applying the final value theorem from the viewpoint of discrete-time transformation. Also, this study proves that the ripple of the proposed controller decreases with the increase of this sampling frequency and, when sampling frequency is fixed, it decreases with the increase of the control input period.

유압펌프에서 발생되는 고주파 유량맥동의 고응답 계측

  • 이상기;김도태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.267-272
    • /
    • 1995
  • The paper describes an approach for measuring flow ripple generated by oil hydraulic axial piston pumps. Flow ripple has periodic waveforms due to the cyclic nature of a pump's operation, and interacts with the connected hydraulic systems such as pipes and components to produce a pressure ripple, also known as fluid-borne noise. It is indispensable to measure a flow ripple because increasing of vibration and noise caused by a flow ripple has become a point to be considered and has need of solving these problems. The measurement of flow ripple with high frequencies from oil hydraulic axial piston pumps is msde by using the remote instantaneous flow rate measurement method. As a result, the reverse flow through the relief groove in valve plate has an important effect upon a flow ripple generated by a pumps.

  • PDF

Active Cancellation of PMSM Torque Ripple Caused by Magnetic Saturation for EPS Applications

  • Lee, Geun-Ho
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.176-180
    • /
    • 2010
  • This paper deals with a control method to reduce the torque ripple of a permanent magnet synchronous motor (PMSM) for electric power steering (EPS) systems. Such an application requires a very low torque ripple in order to maintain a good steering feel. However, because of spatial limitations, it cannot help having a partial saturation in the iron core of the PMSM for an EPS system, and this saturation results in a significant torque ripple. Thus, this paper analyzes the torque ripple caused by the magnetic saturation of a PMSM and proposes a method with respect to inductance measurement to verify the partial saturation. In addition, it is shown that a compensation current is needed in order to minimize the torque ripple when a PMSM is driven in the high torque region. The estimation process of the current and the torque ripple decreased by the current are presented and verified with test results.

Analysis of the Output Ripple of the DC-DC Boost Charger for Li-Ion Batteries

  • Nguyen, Van-Sang;Tran, Van-Long;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.135-142
    • /
    • 2014
  • In the design of battery chargers, limiting the output ripple current according to the manufacturer's recommendation is important for reliable service and extended battery life. Ripple components can cause internal heating of the battery and thus reduce the service life of the battery. Care must be exerted in the design of the switching converter for the charge application through the accurate estimation of the output current ripple value. This study proposes a method to reduce the output current ripple of the converter and presents a detailed analysis of the output current ripple of the DC-DC boost converter to provide a guideline for the design of the battery charger.