• Title/Summary/Keyword: ripening stage

Search Result 321, Processing Time 0.047 seconds

Development of pallet-scale modified atmosphere packaging for 'Tabor' tomatoes (토마토 'Tabor' 품종의 파렛트 단위 MAP 적용 연구)

  • Park, Jong Woo;Kim, Jinse;Park, Seok Ho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Lee, Jung Soo
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.614-622
    • /
    • 2016
  • This study was carried out to investigate the effect of modified-atmosphere packaging (MAP) on the quality change of "Tabor" tomatoes during long-term exportation periods. Hydroponics tomatoes were harvested at the turning stage, sorted, and box packed and then packaged in nylon film with a pallet. The packaged pallet was filled with a gas composition (5% $O_2$, 1% $CO_2$, and 94% $N_2$) and stored at $10^{\circ}C$ for three weeks. The quality changes in weight loss, firmness, color, acidity, soluble solids, and microorganism growth were measured every 7 day interval. During the initial storage, the pallet-scale MAP showed slightly higher weight loss and firmness changes when compared to the conventional pallet. The total color change (${\Delta}E$) during ripening was delayed 10% under MAP storage. Acidity, soluble solids and phenolic compound contents decreased with increases in storage time regardless of the storage method; however, the quality changes of tomatoes were delayed in the MAP pallet. Furthermore, the decay rate of the pallet-scale MAP stored for 14 days was less than that of the conventional pallet, and the number of microorganisms was approximately 30% lower in the pallet-scale MAP, showing a positive effect on marketability. These results suggested that the pallet-scale MAP of tomatoes could ensure higher quality and longer storage periods than conventional pallet storage.

Control of Irrigation Amount for Production of High Quality Fruit in Melon Fertigation Cultivation (멜론 관비재배시 고품질 과실생산을 위한 관수량 조절)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Eom, Young-Cheol;Park, Jin-Meun;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.288-292
    • /
    • 2008
  • This study was conducted to identify the effects of irrigation amount to produce high quality melon fruit in fertigation culture. Irrigation amount of during fruit harvesting period was doubled at the low irrigation point ($(-45{\sim}50\;kPa$) treatment as 115 mm as than that of the high irrigation point ($-20{\sim}25\;kPa$) treatment. The plant growth rates such as stem length, leaf weight and plant height were a little diminished at the low irrigation point ($-45{\sim}50\;kPa$) than those of the other treatments. Internode length was however not affected by irrigation amount. Fruit weight was lighter at the low irrigation point ($-45{\sim}50\;kPa$) than that of at the high irrigation point and fruit height was shorter, but fruit diameter was not affected by irrigation amount. Fruit soluble solid was $0.9^{\circ}Bx$ higher at the low irrigation point ($-45{\sim}50\;kPa$) than at the high irrigation point ($-20{\sim}25\;kPa$) and net index was higher. Total marketable yield was highest by 3,937 kg/10a at the high irrigation point ($-20{\sim}25\;kPa$), but the excellent marketable yield was highest by 2,531 kg/10a at the low irrigation point ($-45{\sim}50\;kPa$). Inorganic contents of the soil N, K, Ca and Mg were not affected by irrigation amount. It was therefore thought that optimum irrigation point to produce high quality melon fruit by fertigation culture was $-45{\sim}50\;kPa$ at ripening stage.

Preservation of Kimchi by Ionizing Radiation (방사선에 의한 김치저장 연구)

  • 강세식;김중만;변명우
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.4
    • /
    • pp.225-232
    • /
    • 1988
  • To improve the storage method for Kimchi, optimal ripening Kimchi was irradiated with doses of 1,3,5 kGy Co-GO gamma radiation, followed by the microbiological, physicochemical and sensory evaluations during storage at $5^{\circ}C$. 1. Total aerobic count increased in the beginning of storage and then decreased slowly as the number of total lactobacilli (anaerobe) increased. The above total aerobic and lactobacilli were reduced by 1 to 3 log cycles with irradiation and at the 90th day after storage the number of total lactobacilli remained $1.30{\times}10^{8}\;per\;ml$ in3 kGy irradiated group. Irradiation treatment at 3 kGy sterilized coli forms and molds contaminating the sample as the level of $2.0{\times}10^{4}\;per\;ml\;and\;5.4{\times}10^{2}\;per\;ml$, respectively and no apparent growth was observed in both control and 1 kGy irradiated groups after 20 days of storage. The population.of yeast, $3.5{\times}10^{3}\;per\;ml$ initially, in, creased steadily during Kimchi storage and at 90 days of storage the number was shown to be $5.6{\times}10^{4}\;per\;ml\;and\;6.5{\times}10^{2}\;per\;ml$ in control and 3 kGy irradiated groups, respectively. 2. In the physicochemical changes during Kimchi storage, pH, acidity and volatile acid of non-irradiated control at the 45th day after storage were 4.0,0.7% and 0.066%, while those of 3 kGy irradiated group were 4.2, 0.59 and 0.06% at the 90th day of storage, respectively. The reducing sugar content of all stored samples changed inversely total acidity content, indicating irradiation delayed the changes of them. The amount of aseorbic acid decreased gradually with the storage time and irradiation dose increase. Textural parameters of 3 kGy irradiated group were superior to those of other groups at the latter stage of storage. 3. Sensory evaluations showed that 3 kGy irradiation was the optimum dose level to extend tite shelf-life of Kimchi more than two months as compared to control.

  • PDF

A Medium-Maturing and Good Quality Japonica Rice Variety, "Cheongan" (벼 중생 고품질 신품종 "청안")

  • Yang, Sae-Jun;Kim, Yeon-Gyu;Choi, Im-Soo;Cho, Young-Chan;Hwang, Hung-Goo;Hong, Ha-Cheol;Kim, Myeong-Ki;Oh, Myung-Kyu;Shin, Young-Seop;Lee, Jeom-Ho;Choi, Yong-Hwan;Choi, In-Bea;Kang, Kyung-Ho;Yea, Jong-Doo;Lee, Jeong-Heui
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.649-653
    • /
    • 2009
  • "Cheongan" is a new japonica rice variety developed from a cross between SR15225-B-22-1-2-1 and Iksan431 in summer season, 1997 by National Institute of Crop Science, RDA. The line SR15225-B-22-1-2-1 has good canopy architecture and multi-disease and insect resistance, and Iksan431 has translucent milled rice and good eating-quality. Heading date of Cheongan is August 13 in central lowland and mid-mountainous areas. "Cheongan" having culm length of 84 cm shows relatively semi-erect pubescent leaf blade and rigid culm, tolerance to lodging with and good canopy architecture. This variety has 14 tillers per hill and 126 spikelets per panicle. It shows tolerance to heading delay and spikelet sterility comparable to Hwaseongbyeo when exposed to cold stress. Leaf senescence of Cheongan progresses slowly during the ripening stage and the viviparous germination ratio was 59 %, similar to that of Hwaseongbyo. "Cheongan" shows moderately resistance to blast disease, but susceptible to stripe virus and brown planthopper. The milled rice of "Cheongan" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows similar amylose content of 18.7%, gelatinization temperature, and similar palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.54 MT/ha at ordinary season culture in local adaptability test for three years. Especially, "Cheongan" has better milling properties of higher 98.4% and 73.9% in the percentage of head rice in milled rice and milling recovery of head rice, respectively, than those of Hwaseongbyeo. "Cheongan" could be adaptable to the central and mid-southern plain area, and mid-western coastal area of Korea.

A Very Early-Maturing, Cold Tolerant and High Quality japonica Rice Variety 'Hanseol' (극조숙 고품질 내냉성 벼 신품종 '한설')

  • Lee, Jeong-Heui;Shin, Young-Seop;Jeong, O-Young;Kim, Myeong-Ki;Kim, Yeon-Gyu;Kim, Hong-Yeol;Lee, Jeom-Ho;Lee, Jeong-Il;Cho, Young-Chan;Jeon, Yong-Hee;Choi, Yong-Hwan;Yang, Chang-Ihn;Hong, Ha-Cheol;Won, Yong-Jae;Shin, Jin-Chul;Kim, Hyung-Yoon;Seo, Dae-Ha;Hwang, Hung-Goo;Yea, Jong-Doo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.632-637
    • /
    • 2010
  • 'Hanseol' is a new very early-maturing, cold tolerant and high quality japonica rice variety developed from a cross of 'Jinbu24' and 'Jinbu25' by the rice breeding team of National Institute of Crop Science (NICS), Rural Development Administration (RDA) in 2009. The heading date of this variety is July 25, which is four days earlier than check variety, 'Jinbubyeo'. 'Hanseol' has 65 cm of culm length, 99 spikelets per panicle, 82.9% of ripened grain rate, and 21.5 g of 1,000 grain-weight of brown rice. This variety shows susceptibility to bacterial leaf blight and virus diseases, and insect pests. It is tolerant to cold stress in terms of less heading delay and high fertility in cold water irrigated cultivation. This variety shows delayed leaf senescence and considerable tolerance to viviparous germination at ripening stage. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and medium-short grain. 'Hanseol' showed low gelatinization temperature and 6.1% protein content, 19.1% amylose content and good palatability of cooked rice. The milled rice yield of this variety is about 5.43 MT/ha at ordinary culture in local adaptability test for three years. 'Hanseol' would be highly adaptable to mid-north and mid-mountainous areas, and mid-northern alpine area in Korea.

A Medium-Maturing, High Non-Dietary Starch, Specialty Rice Cultivar 'Goami 3' (벼 중생 고 식이섬유 특수미 신품종 '고아미3호')

  • Lee, Sang-Bok;Lee, Jeom-Ho;Shin, Young-Seop;Lee, Kyu-Seong;Hwang, Hung-Goo;Jeong, O-Young;Yang, Chang-Ihn;Choi, Yong-Hwan;Yang, Sae-Jun;Jeon, Yong-Hee;Hong, Ha-Cheol;Kim, Hong-Yeol;Cho, Young-Chan;Lee, Jeong-Heui;Yea, Jong-Doo;Oh, Myung-Kyu;Kim, Myeong-Ki;Kim, Yeon-Gyu;Jeong, Kuk-Hyun;Lee, Young-Tae
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.595-599
    • /
    • 2011
  • 'Goami 3' is a new japonica rice cultivar developed from a cross between Suweon464 and Daeanbyeo by the rice breeding team of National Institute of Crop Science, RDA. 'Goami3' has about 130 days growth duration from transplanting to heading in central plain area of Korea. It has a good semi-erect plant type and resistance to lodging of about 79 cm in culm length. 'Goami 3' had 15 panicles per hill and 104 spikelets per panicle. 'Goami 3' has very high amylose (29.5%) and high non-dietary starch compared with Hwaseongbyeo. This rice variety has slow senescence and 47% tolerance to viviparous germination during the ripening stage. 'Goami 3' is susceptible to leaf blast, bacterial blight, virus disease and insect pest. The yield performance of this cultivar in milled rice was about 3.92MT/ha by ordinary season culture in local adaptability test from 2005 to 2007. 'Goami 3' is adaptable to central and southern plain area of Korea.

An Extremely Early-Maturing, Plain Area Adaptable, Blast Resistant and High Grain Quality Rice Cultivar 'Joun' (평야지적응 극조생 내도열병 고품질 벼 신품종 '조운')

  • Won, Yong-Jae;Ryu, Hae-Young;Shin, Young-Seop;Hong, Ha-Cheol;Kim, Yeon-Gyu;Kim, Myeong-Ki;Jung, Kuk-Hyun;Jeon, Yong-Hee;Cho, Young-Chan;Ahn, Eok-Keun;Yoon, Kwang-Sup;Lee, Jeong-Heui;Kim, Jeong-Ju;Oh, Sea-Kwan;Oh, Myung-Kyu;Jeung, Ji-Ung;Chun, A-Reum;Park, Hyang-Mi;Roh, Jae-Hwan;Yoon, Young-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.313-317
    • /
    • 2010
  • There are the farmer's needs to develop early-maturing cultivar adaptable to mid-northern inland plain and alpine area. Furthermore, it is required to develop a rice variety to produce new rice before concentrated marketing dates, even in the years of early Chuseok. 'Joun' is a new extremely early-maturing japonica rice cultivar developed in 2009 from the cross of SR14880-173-3-3-2-2-2/Unbong20 at Cheolwon Substation, National Institute of Crop Science (NICS), Rural Development Administration (RDA). The heading date of 'Joun' is July 23 in mid-northern alpine area, which is 7 days earlier than that of Odaebyeo. It has about 61 cm in culm length with semi-erect plant type. Panicle has a few awns and its exertion is good. The number of spikelets per panicle is smaller than that of Odaebyeo and 1,000 grain-weight of brown rice is 21.2 g which is less than 26.3 g of Odaebyeo, but the complete grain ratio is higher. Milled kernels are translucent with non-glutinous endosperm and palatability of cooked rice is good. It shows strong resistance to cold treatment, lodging, premature heading, wilting and viviparous germination during ripening stage. This cultivar shows resistance to leaf blast disease but susceptible to bacterial blight, virus disease and insect pests. The milled rice yield performance of 'Joun' is about 5.18 MT/ha by ordinary culture in local adaptability test for three years. This cultivar may be highly adaptable to the mid-northern inland plain and alpine area, north-eastern coastal area and middle plain area.

An Early-Maturing, Blast Resistant and High Quality Rice Cultivar "Pyeongwon" (벼 조생 단간 내도열병 고품질 신품종 "평원")

  • Ryu, Hae-Young;Jeon, Yong-Hee;Jung, Kuk-Hyun;Shin, Young-Seop;Hwang, Hung-Goo;Kim, Hong-Yeol;Kim, Myeong-Ki;Jung, O-Young;Won, Yong-Jae;Kim, Yeon-Gyu;Yang, Chang-In;Lee, Jeom-Ho;Lee, Jeong-Il;Lee, Jeong-Heui;Choi, Yoon-Hee;Yang, Sae-Jun;Ahn, Eok-Keun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • 'Pyeongwon' is a new japonica rice cultivar which is developed from a cross between Jinbu19 and Samjiyeon4 from North Korea by the rice breeding team of National Institute of Crop Science, RDA. Pyeongwon has about 107 days duration from seeding to heading in mid-northen plain, alpine, north-eastern coastal and southern alpine areas. It has about 67 cm culm length and tolerance to lodging. Pyeongwon has 13 tillers per hill and 82 spikelets per panicle. It showed tolerance to heading delay and spikelet sterility due to cold treatment similar to Odaebyeo. It also showed slow leaf senescence and moderate tolerance to viviparous germination during the ripening stage. Pyeongwon has resistance to blast disease but susceptible to stripe virus and brown planthopper. Milled rice of Pyeongwon has translucent kernels, relatively clear non-glutinous endosperm and medium short grain. It is characterized as a low gelatinization temperature and slightly lower amylose content (17.1%) variety compared to Odaebyeo (19.5%) and has good palatability of cooked rice. The milled rice yield performance of this cultivar was about 5.28 MT/ha by ordinary culture in local adaptability test for three years. This cultivar may be highly adaptable to the mid-northen plain, alpine, north-eastern coastal and southern alpine areas of Korea.

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.

A High Quality Rice Variety "Cheongcheongjinmi" Adaptable to Low Nitrogen Fertilizer Application (질소 소비료적성 고품질 벼 신품종 "청청진미")

  • Cho, Young-Chan;Oh, Myung-Kyu;Choi, Im-Soo;Kim, Yeon-Gyu;Kim, Myeong-Ki;Hwang, Hung-Goo;Hong, Ha-Cheol;Jeong, O-Young;Choi, In-Bae;Choi, Yong-Hwan;Jeon, Yong-Hee;Lee, Jeom-Ho;Lee, Jeong-Heui;Lee, Jeong-Il;Shin, Young-Seop;Kim, Jeong-Ju;Kim, Ki-Jong;Baek, Man-Kee;Roh, Jae-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.654-659
    • /
    • 2009
  • "Cheongcheongjinmi" is a new japonica rice variety developed from a cross between Iri401 and Ilpumbyeo by the rice breeding team of National Institute of Crop Science, RDA. This variety is suitable for ordinary season culture of low level nitrogen application. Heading date of "Cheongcheongjinmi" is August 17, 4 days later than that of Sobibyeo in plain areas. It has culm length of 82 cm, and relatively semi-erect pubescent leaf blade and slightly tough culm tolerant to lodging with good canopy architecture. This variety has 13 tillers per hill, 126 spikelets per panicle and 90.2% of ripened grains. "Cheongcheongjinmi" showed lower spikelet fertility than Sobibyeo when exposed to cold stress. This variety showed slower leaf senescence and lower viviparous germination compared to Sobibyeo during the ripening stage. "Cheongcheongjinmi" is susceptible to blast disease, bacterial blight, virus diseases and planthoppers. The dried plant weight, total nitrogen and RuBisCO activity of "Cheongcheongjinmi" were higher than those of Sobibyeo in low level nitrogen application. The milled rice of "Cheongcheongjinmi" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows lower protein and amylose contents than those of Sobibyeo, and better palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.10 MT/ha at low level nitrogen application of ordinary season culture in local adaptability test for three years. Especially, "Cheongcheongjinmi" has better milling properties such as the percentage of whole grain in milled rice and milling recovery of whole grain, respectively than those of Sobibyeo. "Cheongcheongjinmi" would be adaptable to middle plain areas and middle-western coastal areas of Korea.