• 제목/요약/키워드: ring structure

검색결과 1,337건 처리시간 0.029초

Cloning and Expression Characteristics of Pharbitis nil COP1 (PnCOP1) During the Floral Induction

  • 김윤희;김성룡;허윤강
    • Journal of Photoscience
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2005
  • The ubiquitin E3 ligase COP1 (Constitutive Photomorphogenesis 1) is a protein repressor of photomorphogenesis in Arabidopsisplants, and it found in various organisms, including animals. The COP1 protein regulates the stability of many of the light-signaling components that are involved in photomorphogenesis and in the developmental processes. To study the effect of COP1 on flowering in a short day plant, we have cloned a full-length of PnCOP1 (Pharbitis nil COP1) cDNA from Pharbitis nil Choisy cv. Violet, and we examined its transcript levels under various conditions. A full-length PnCOP1 cDNA consists of 2,280 bp nucleotidesthat contain 47 bp of 5'-UTR, 232 bp of 3'-UTR including the poly (A) tail, and 1,998 bp of the coding sequence. The deduced amino acid sequence contains 666 amino acids, giving it a theoretical molecular weight of 75 kD and a isolectric point of 6.2. The PnCOP1 contains three distinct domains, an N-terminal $Zn^2+$-binding RING-finger domain, a coiled-coil structure, and WD40 repeats at the C-terminal, implying that the protein plays a role in protein-protein interactions. The PnCOP1 transcript was detected in the cotyledon, hypocotyls and leaves, but not in root. The levels of the PnCOP1 transcript were reduced in leaves that were a farther distance away from the cotyledons. The expression level of the PnCOP1 gene was inhibited by light, while the expression was increased in the dark. During the floral inductive 16 hour-dark period for Pharbitis nil, the expression was increased and it reached its maximum at the 12th hour of the dark period. The levels of PnCOP1 mRNA were dramatically reduced upon light illumination. These results suggest that PnCOP1 may play an important function in the floral induction of Pharbitis nil.

  • PDF

Insight into Structural Aspects of Histidine 284 of Daphnia magna Arginine Kinase

  • Rao, Zhili;Kim, So Young;Li, Xiaotong;Kim, Da Som;Kim, Yong Ju;Park, Jung Hee
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.784-792
    • /
    • 2020
  • Arginine kinase (AK), a bioenergy-related enzyme, is distributed widely in invertebrates. The role of highly conserved histidines in AKs is still unascertained. In this study, the highly conserved histidine 284 (H284) in AK of Daphnia magna (DmAK) was replaced with alanine to elucidate the role of H284. We examined the alteration of catalytic activity and structural changes of H284A in DmAK. The catalytic activity of H284A was reduced dramatically compared to that in wild type (WT). Thus the crystal structure of H284A displayed several structural changes, including the alteration of D324, a hydrogen-bonding network around H284, and the disruption of π-stacking between the imidazole group of the H284 residue and the adenine ring of ATP. These findings suggest that such alterations might affect a conformational change of the specific loop consisting of G310-V322 at the antiparallel β-sheet region. Thus, we speculated that the H284 residue might play an important role in the conformational change of the specific loop when ATP binds to the substrate-binding site of DmAK.

발변전용 피뢰기의 구조 및 ZnO 바리스터 소자의 전기적 특성 (Structure of Station Class Lightning Arresters and Electrical Characteristics of ZnO Varistor Blocks)

  • 조한구;한세원;이운용;윤한수;최인혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper presents structural characteristics of station class lightning arresters and electrical characteristics of manufactured ZnO varistor blocks which are usable in those arresters. Three types of station class lightning arresters were investigated and those are a ceramic arrester, a FRP tube type polymer arrester, and a FRP rod type polymer arrester. Each arrester has merits and demerits with structural characteristics. In general, polymer arresters were made of silicon rubber for housing materials, FRP tube or rod for mechanical strength, ZnO blocks for electrical characteristics, and metal parts for electrical contact and the silicon rubber, the housing materials, was directly injected to the arrester module which was assembly composed of electrodes, ZnO blocks and FRP tube or rod, and to prevent the nonlinear electric fields distribution on upper parts of arresters, the grade ring was adopted to the upper electrodes. The reference voltage, nonlinear coefficient, residual voltage, and voltage ratio of manufactured ZnO varistors are 4.90kV, 50, 9.54kV, 1.94, respectively. Compared to designed electrical characteristics, the reference voltage was low for 600v and the voltage ratio was slightly high. However, the characteristics of discharge withstand was so excellent that the mechanical destruction does not occur at the impulse current of $8/20{\mu}s$ 10kA for 100 times.

  • PDF

Silver Ions in Zeolite A are Reduced by H$_2$ only at High Temperatures when 8-Rings are Blocked by Cs$^+$. Crystal Structures of Dehydrated $Ag_9Cs_3$-A Treated with H$_2$ at 23, 310, and 470${^{\circ}C}$

  • KIm, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권2호
    • /
    • pp.69-72
    • /
    • 1987
  • The structures of dehydrated $Ag_9Cs_3$-A treated with hydrogen gas at three different temperatures have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 23(1) $^{\circ}C$. All crystals were ion exchanged in flowing streams of aqueous $AgNO_3$/$CsNO_3$ with a mole ratio 1:3.0 to achieve the desired crystal composition. The structures treated with hydrogen at $23^{\circ}C(a=12.288(1)\;{\AA})\;and\;310^{\circ}C(a=12.291(2)\;{\AA})$ refined to the final error indices R1 = 0.091 and R2 = 0.079, and 0.065 and 0.073, respectively, using the 216 and 227 reflections, respectively, for which I >3${\sigma}$(I). In both of these structures, eight $Ag^+$ ions are found nearly at 6-ring centers, and three $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry. One $Ag^{\circ}atom$, presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework during the dehydration process, is retained within the zeolite, perhaps in a cluster. In these two structures hydrogen gas could not enter the zeolite to reduce the $Ag^+$ ions because the large $Cs^+$ ions blocked all the 8-windows. However, hydrogen could slowly diffuse into the zeolite and was able to reach and to reduce about half of the $Ag^+$ ions in the structure only at high temperature ($470^{\circ}C$). The silver atoms produced migrated out of the zeolite framework, and the protons generated led to substantial crystal damage.

베타1-아드레날린 수용체를 표적으로 하는 심근영상제로서 18F 표지된 nebivolol의 합성 (Synthesis of [18F]-Labelled Nebivolol as a β1-Adrenergic Receptor Antagonist for PET Imaging Agent)

  • 김택수;박정훈;이준영;양승대;장동조
    • 방사선산업학회지
    • /
    • 제10권4호
    • /
    • pp.181-187
    • /
    • 2016
  • Selective ${\beta}_1$-agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective ${\beta}_1$-antagonists including nebivolol have high binding affinity on ${\beta}_1$-adrenergic receptor, not ${\beta}_2$-receptor mainly expressed in smooth muscle. Nebivolol is one of most selective ${\beta}_1$-blockers in clinically used ${\beta}_1$-blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective ${\beta}_1$-blocker. Nebivolol is $C_2$-symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of $^{18}F$. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for $^{18}F$-aromatic substitution, was synthesized in moderate yield which was readily subjected to $^{18}F$-aromatic substitution to give $^{18}F$-labelled nebivolol.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • 류재곤;정영일;김영훈;김인숙;김도훈;김성호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권5호
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Sex-related demographics in two remnant populations of a dioecious tree Ilex cornuta (Aquifoliaceae): implications for conservation

  • Shin, Sookyung;Lee, Hakbong;Lee, Jei-Wan;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • 제43권3호
    • /
    • pp.320-331
    • /
    • 2019
  • Background: Dioecious plant species having both male and female plants have been investigated regarding sex-related characteristics such as sex ratio, sex-differential resource requirements, and spatial segregation of the sexes. Habitat loss and fragmentation are major threats to the survival of plant populations, but dioecious species are particularly more prone to such habitat degradation than non-dioecious species because of their dimorphic sexual system. We examined the sex-related demographics of two Ilex cornuta populations being different regarding land use history. Methods: During 2016-2017, we examined I. cornuta trees with a basal diameter ${\geq}1.5cm$ in the Yongsu-ri population (YS population) and the Gotjawal Provincial Park population (GP population). Plant sex (male, female, or unsexed) was identified. The tree size (basal diameter and height of the main stem), clonal production (the ramet numbers per genet), and vitality for each clone were measured. The associations between population, sex, tree size, clonal production, and vitality were examined using ANOVAs and contingency table analyses. Finally, point pattern analyses using O-ring statistics were conducted to assess spatial patterns. Results: Upon excluding unsexed trees, the YS population with 74 trees was significantly male-biased (0.66), while the GP population with only 26 trees had a 1:1 sex ratio. In both populations, males and females did not differ in tree size. Although the mean number of ramets differed significantly between populations, females tended to produce more ramets than males. The proportion of weak trees was significantly higher in the YS than in the GP population. Neither population showed evidence of spatial segregation of the sexes. Conclusions: The two populations of dioecious I. cornuta are characterized by the small number of trees and relatively high frequencies of non-reproductive trees. Both indicate that these populations are quite susceptible to environmental and genetic stochasticity. On the other hand, the differences between populations in sex ratio, clonal production, and vitality suggest that conservation efforts for I. cornuta need to be population-specific. In order to help recover and enable this vulnerable species to persist, it is necessary to find ways to enhance their sexual reproduction and simultaneously reduce habitat disturbances due to anthropogenic activities.

The investigation of a new fast timing system based on DRS4 waveform sampling system

  • Zhang, Xiuling;Du, Chengming;Chen, Jinda;Yang, Herun;kong, Jie;Yang, Haibo;Ma, Peng;Shi, Guozhu;Duan, limin;Hu, Zhengguo
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.432-438
    • /
    • 2019
  • In the study of nuclear structure, the fast timing technique can be used to measure the lifetime of excited states. In the paper, we have developed a new fast timing system, which is made up of two $LaBr_3:Ce$ detectors and a set of waveform sampling system. The sampling system based on domino ring sampler version 4 chip (DRS4) can digitize and store the waveform information of detector signal, with a smaller volume and higher timing accuracy, and the waveform data are performed by means of digital waveform analysis methods. The coincidence time resolution of the fast timing system for two annihilation 511 keV ${\gamma}$ photon is 200ps (FWHM), the energy resolution is 3.5%@511 keV, and the energy linear response in the large dynamic range is perfect. Meanwhile, to verify the fast timing performance of the system, the $^{152}Gd-2_1^+$ state form ${\beta}^+$ decay of $^{152}Eu$ source is measured. The measured lifetime is $45.3({\pm}5.0)ps$, very close to the value of the National Nuclear Data Center (NNDC: $46.2({\pm}3.9)ps$). The experimental results indicate that the fast timing system is capable of measuring the lifetime of dozens of ps. Therefore, the system can be widely used in the research of the fast timing technology.

Evaluation of 20(S)-ginsenoside Rg3 loaded hydrogel for the treatment of perianal ulcer in a rat model

  • Jin, Longhai;Liu, Jinping;Wang, Shu;Zhao, Linxian;Li, Jiannan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.771-779
    • /
    • 2022
  • Background: As a kind of common complication of the surgery of perianal diseases, perianal ulcer is known as a nuisance. This study aims to develop a kind of 20(S)-ginsenoside Rg3 (Rg3)-loaded hydrogel to treat perianal ulcers in a rat model. Methods: The copolymers PLGA1600-PEG1000-PLGA1600 were synthesized by ring-opening polymerization process and Rg3-loaded hydrogel was then developed. The perianal ulcer rat model was established to analyze the treatment efficacy of Rg3-loaded hydrogel for ulceration healing for 15 days. The animals were divided into control group, hydrogel group, free Rg3 group, Rg3-loaded hydrogel group, and Lidocaine Gel® group. The residual wound area rate was calculated and the blood concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) were recorded. Hematoxylin and eosin (H&E) staining, Masson's Trichrome (MT) staining, and tumor necrosis factor α (TNF-α), Ki-67, CD31, ERK1/2, and NF-κB immunohistochemical staining were performed. Results: The biodegradable and biocompatible hydrogel carries a homogenous interactive porous structure with 10 ㎛ pore size and five weeks in vivo degradation time. The loaded Rg3 can be released sustainably. The in vitro cytotoxicity study showed that the hydrogel had no effect on survival rate of murine skin fibroblasts L929. The Rg3-loaded hydrogel can facilitate perianal ulcer healing by inhibiting local and systematic inflammatory responses, swelling the proliferation of nuclear cells, collagen deposition, and vascularization, and activating ERK signal pathway. Conclusion: The Rg3-loaded hydrogel shows the best treatment efficacy of perianal ulcer and may be a candidate for perianal ulcer treatment.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.