• Title/Summary/Keyword: rigid-body-spring network model

Search Result 6, Processing Time 0.02 seconds

Rigid-Body-Spring Network with Visco-plastic Damage Model for Simulating Rate Dependent Fracture of RC Beams (Rigid-Body-Spring Network를 이용한 RC 보의 속도 의존적 파괴 시뮬레이션)

  • Lim, Yun-Mook;Kim, Kun-Hwi;Ok, Su-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.265-268
    • /
    • 2011
  • 하중 속도에 따른 콘크리트 재료의 역학적 특성은 구조물의 동적파괴거동에 영향을 미친다. 본 연구는, rigid-body-spring network를 이용하여 파괴해석을 수행하고, 거시적 시뮬레이션에서 속도효과를 표현하기 위하여 점소성 파괴모델을 적용하였다. 보정을 위해서 Perzyna 구성관계식의 점소성 계수들이 다양한 하중속도에 따른 직접인장실험을 통해서 결정되었다. 동정상승계수를 이용하여 하중 속도가 증가함에 따른 강도 증가를 표현하였고 이를 실험결과와 비교하였다. 다음으로 느린 하중속도와 빠른 하중속도에 따라 단순 콘크리트 보와 철근 콘크리트 보에 대한 휨 실험을 수행하였으며, 하중 속도에 따라서 서로 다른 균열 패턴을 관찰할 수 있었다. 빠른 하중은 보의 파괴가 국부적으로 나타나게 만드는데, 이는 속도 의존적 재료의 특성 때문이다. 구조적인 측면에서, 보강재는 느린 하중속도에서 균열의 크기를 줄이고 연성을 높이는 데 큰 영향을 미친다. 본 논문은 속도 의존적 거동에 대한 이해와 동적하중에 대한 보강효과를 제시한다.

  • PDF

RBSN Analysis Model of Asphalt Pavement Retrofitted with Civil Fiber (토목섬유로 보강된 아스팔트 포장의 RBSN 해석 모델)

  • Han, Sang-Hoon;Kwak, So-Shin;Kwon, Yong-Kil;Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • This paper presents a simple and efficient two-dimensional rigid-body-spring network model able to accurately estimate the fractural behavior of civil fiber reinforced pavements. The proposed rigid-body-spring network model, denoted as RBSN model, considers civil fiber reinforcing materials using the beam elements and link spring elements. The RBSN method is able to model collapse due to asphalt crushing and civil fiber slip. The RBSN model is used to predict the applied load-midspan deflection response of civil fiber retrofitted asphalt specimen subjected to the three-point bending. Numerical simulations and experimental measurements are compared to based on tests available in the literature. The numerically simulated responses agree significantly with the corresponding experimental results until the maximum load. However, It should be mentioned that, in order to more accurately predict the postpeak flexural behavior of the civil fiber retrofitted asphalt pavement, development of the advanced model to simulate the slip relationship between civil fiber and asphalt is required.

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

Evaluation of Thermal Deformation Model for BGA Packages Using Moire Interferometry

  • Joo, Jinwon;Cho, Seungmin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.230-239
    • /
    • 2004
  • A compact model approach of a network of spring elements for elastic loading is presented for the thermal deformation analysis of BGA package assembly. High-sensitivity moire interferometry is applied to evaluate and calibrated the model quantitatively. Two ball grid array (BGA) package assemblies are employed for moire experiments. For a package assembly with a small global bending, the spring model can predict the boundary conditions of the critical solder ball excellently well. For a package assembly with a large global bending, however, the relative displacements determined by spring model agree well with that by experiment after accounting for the rigid-body rotation. The shear strain results of the FEM with the input from the calibrated compact spring model agree reasonably well with the experimental data. The results imply that the combined approach of the compact spring model and the local FE analysis is an effective way to predict strains and stresses and to determine solder damage of the critical solder ball.

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

3D Numerical Simulation of Pullout Behavior of FRP Embedded in Concrete using RBSN Method (RBSN 방법을 사용한 콘크리트에 삽입된 FRP rod의 Pull-out거동의 3D 수치 Simulation)

  • Kim, Jang-Ho;Li, Jing;Tran, Tuan Kiet;Hong, Jong-Suk;Kim, Yun-Ho;Lee, Gyeong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.365-368
    • /
    • 2006
  • RBSN Method, Rigid-Body-Spring Network Method, is a structural analysis method that overcomes the problems faced in FEM analysis of concrete or crack forming structures. In RBSN, irregular lattices are used to model structural components consisting of bulk material, curvilinear reinforcements, and their interfaces. Because reinforcements and their interfaces in the bulk material are freely positioned, meshing is irrespective of the geometry of the representing bulk material. In this paper, RBSN method of 3D is applied in simulating the pull-out test of FRP (Fiber Reinforced Polymer) embedded in concrete. The comparison of analysis results to experimental results shows that RBSN method simulates the shear-slip behavior very precisely. From the analysis results, 3D RBSN method is proven to be an effective and accurate analysis method for concrete structural analysis. Also, the results show that RBSN method can be a potential analysis method for concrete structures that can replace the current FEM analysis.

  • PDF