• Title/Summary/Keyword: rigid motion

Search Result 675, Processing Time 0.029 seconds

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez;Tam Larkin;Nawawi Chouw
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.421-436
    • /
    • 2024
  • This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

Surgical treatment of Mallet finger deformity with Hook plate (고리 금속판을 이용한 망치 손가락의 수술적 치료법)

  • Choi, Seok Min;Jung, Sung Gyun;Shin, Ho Seong;Park, Eun Soo;Kim, Yong Bae
    • Archives of Plastic Surgery
    • /
    • v.36 no.3
    • /
    • pp.318-321
    • /
    • 2009
  • Purpose: The bony mallet finger injury is generally managed by conservative treatments, but operative treatments are needed especially when the fractures involve above 30% of articular surface or distal phalanx is accompanied by subluxation in the volar side. This is the reason they often result in chronic instability, articular subluxation and unsatisfactory cosmetic. In this report, We describe new method using the hook plate as an operative treatment of Mallet finger deformity. Methods: Among 13 patients with Mallet finger deformity who came from February 2006 to February 2008, six patient were included in surgical indication. Under local anesthesia, H or Y type incision was made at the DIP joint area. After the DIP joint extension, the hook plate was put on the fracture line, and one self tapping screw was used for fixation. 2 hole plate which was one of the holes in 1.5 mm diameter was cut in almost half and bended through approximately $100^{\circ}$. Results: In all six cases which applied the hook plate, complications such as loss of reduction or nail deformity were not seen. In only one patient, hook pate was removed due to inflammatory reaction after surgery. At 2 weeks after operation, active motion of DIP joint was performed. The result was satisfactory not only cosmetically but also functionally. At 6 weeks after operation, the range of motion of DIP joint was average $64^{\circ}$. Conclusion: The purpose of the operative treatment for mallet finger deformity using the hook plate is to provide anatomical reduction with rigid fixation and to prevent contracture at the DIP joint. While other operations take 6 weeks, the operation using the hook plate begins an active motion at 2 weeks after operation. Complication rate was low and the method is rather simple. Thus, the operation using the hook plate is recommended as a good alternative method of the mallet finger deformity treatment.

An Analysis of Intra-Fractional Movement during Image-Guided Frameless Radiosurgery for Brain Tumor Using CyberKnife (사이버나이프를 이용한 무고정틀 두개 방사선 수술 중 발생한 환자의 치료 중 움직임 분석)

  • Kang, Ki Mun;Chai, Gyu Young;Jeong, Bae Gwon;Ha, In-Bong;Park, Kyung Bum;Jung, Jin-Myung;Lim, Young Kyung;Jeong, Hojin
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2012
  • Frameless method in brain radiosurgery has advantages relative to rigid head-frame method in terms of patient friendly and flexible application of multi-fractionation. However, it has also disadvantages and the most negative point is that it cannot control the patient motion during treatment as lowly as the level of the frame-based radiosurgery, which could affect to the treatment accuracy. In the present study, we analyzed the geometric uncertainty of the intra-fraction motion using the actual treatment records of 294-CyberKnife treatments for brain tumors. Based on the analysis, we statistically presented the magnitude of intra-fraction motion in frameless radiosurgy. The result could provide the quantitative information to determine the adequate treatment margins to compensate the intra-fraction movements.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

A Biomechanical Analysis of an Interspinous Distraction Device for Treatment of Lumbar Spinal Stenosis (요추부 협착증 치료를 위한 극돌기 삽입술의 생체역학적 효과 분석)

  • Lee Hui-Sung;Chen Wen Ming;Song Dong-Ryul;Kwon Soon-Young;Lee Kwon-Yong;Lee Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.210-217
    • /
    • 2006
  • Many types of interspinous distraction devices (IDDs) have been recently developed as an alternative surgical treatment to laminectomy and fusion with pedicle screws for the treatment of the lumbar spinal stenosis (LSS). They are intended to keep the lumbar spine in a slightly flexed posture to relieve pain caused by narrowing of the spinal canal and vertebral foramen. However, their biomechanical efficacies are not well known. In this study, we evaluated the kinematic behaviors and changes in intradiscal pressure (IDP) of the porcine lumbar spine implanted with IDD. For kinematics analysis, five porcine lumbar spines (L2-L6) were used and the IDD was inserted at L4-L5. Three markers (${\phi}{\le}0.8mm$) were attached on each vertebra to define a rigid body motion for stereophotogrammetric assessment of the spinal motion in 3-D. A moment of 7.5Nm in flexion-extension, lateral bending, and axial rotation were imparted with a compressive force of 700N. Then, IDD was implanted at L3-L4. IDPs were measured using pressure transducer under compression (700N) and additional extension moment (700N+7.5Nm). In kinematic behaviors, insertion of IDD resulted in statistically significant decrease 42.8% at the implanted level in extension. There were considerable changes in ROM at the adjacent levels, but statistically insignificant. In other motions, there were no significant changes in ROM as well regardless of levels. IDPs at the surgical level (L3-L4) under compression and extension moment decreased by 12.9% and 18.8% respectively after surgery (p<0.05). At the superiorly adjacent levels, IDPs increased by 19.4% and 12.9% under compression and extension, respectively (p<0.05). Corresponding changes at the inferiorly adjacent levels were 29.4% and 6.9%, but they were statistically insignificant (p>0.05). The magnitude of pressure changes due to IDD, both at the operated and adjacent levels, were far less than the previously reported values with conventional fusion techniques. Our experimental results demonstrated the IDDs can be very effective in limiting the extension motion that may cause narrowing of the spinal canal and vertebral foramens while maintaining kinematic behaviors and disc pressures at the adjacent levels.

Treatment of Tibial Fractures by Interlocking Intramedullary Nailing (Interlocking Intramedullary Nail을 이용한 경골 골절의 치료)

  • Jung, Kwang-Yeoung;Lee, Dong-Chul;Suh, Jae-Sung;Kim, Se-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.388-399
    • /
    • 1993
  • The adequate treatment of tibia fracture is one of the most difficult due to severe commiuntion, open wound, delayed union, angulation deformity and infection. We treated 38 fractures of the tibia by Interlocking intramedullary nail from Feb. 1983 to Mar. 1993, 35 cases of the tibia fracture were fresh, 13 cases of fracture were open. The other 3 cases were delayed union and nonunion. The Mean follow-up was 14.0 months. The results were as followings. 1. Of the 38 fractures, 37 fractures united and the mean union time was 18.7 weeks. 2. Interlocking intramedullary nail could be used to the majority of fractures of the proximal & distal tibia shaft fractures. 3. The Interlocking nail had rigid rotational stability and was appropriate for the treatment in severe unstable fractures, commninution and open with bone loss. 4. Delayed union or nonunion was a good indication for intramedullary nailling. 5. The major complication were valgus deformity of 2 cases, varus deformity of 1 case, 1 case deep infection. 6. Interlocking intramedullary nailing provided rigid fixation of fracture and then made early joint motion exercise and ambulation.

  • PDF

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Dynamic Structure of Bacteriorhodopsin Revealed by $^{13}C$ Solid-state NMR

  • Saito, Hazime;Yamaguchi, Satoru;Tuzi, Satoru
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.110-113
    • /
    • 2002
  • We demonstrate here a dynamic structure of bacteriorhodopsin (bR) as revealed by $^{13}$ C NMR studies on [3_$^{13}$ C]_,[1-$^{13}$ C]Ala- and/or Val-labeled wild type and a variety of site-directed mutants at ambient temperature. For this purpose, well-resolved (up to twelve) I$^{13}$ C NMR peaks were assigned with reference to the displacement of peaks due to the conformation-dependent I$^{13}$ C chemical shifts and reduced peak-intensities due to site-directed mutations. Revealed bR structure was not rigid as anticipated from 2D crystals of hexagonal array but a dynamically heterogeneous, undergoing a variety of local fluctuations depending upon specific site with frequency range of 10$^2$ -10$^{8}$ Hz. In particular, dynamics- dependent suppression of peaks turned out to be very sensitive to the motion of 10$^{-4}$ s and 10$^{-5}$ s interfered with frequency of magic angle spinning and proton decoupling, respectively. It is also noteworthy that such dynamic feature is strongly dependent upon the manner of 2D crystalline packing: $^{13}$ C NMR peaks of monomeric bR yielded either highly broadened or completely suppressed signals, depending upon the type of $^{13}$ C-labeled amino-acid residues.

  • PDF