• Title/Summary/Keyword: rigid body simulation

Search Result 213, Processing Time 0.029 seconds

Evaluation of Joint Reaction Forces for a Hydraulic Excavator Subjected to a Critical Load (가혹하중이 작용하는 경우의 굴삭기 연결부의 반력계산)

  • Kim, Oe-Jo;Yu, Wan-Seok;Yun, Kyeong-Hwa;Gang, Ha-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1154-1163
    • /
    • 1996
  • This paper presents a three dimensional modeling and dynamic anlaysis of a hydraulic excavator. An excavator is composed of a ground, an under-frame, two idlers, two spockets, an upper-frame, a boom, an arm, a bucket two yokes, two connecting rods, two boom cylinders, an arm cylinder, and a bucket cylinder. Each cylinder is modeled with two separate bodies which are linked to each other by a translational joint. The three dimensioanl model of the excavator consists of 22 bodies and each body is assumed as rigid. This paper suggested the maximum lifting capability, a critical load and reaction forces at joints form the DADS simulation. It was presumed that the reaction forces due to a critical load are three times bigger than those due to the maximum lifting capacity.

Geometry Cutting Solution using Vector Dot Product (벡터 내적연산을 이용한 지오메트리 절삭 솔루션)

  • Hwang, Min Sik
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1337-1344
    • /
    • 2016
  • As the visual effect frequently used in movies or animations, special effects are well suited for the creation of buildings or materials' destruction and collapse scenes. With the relevant programs developing technologically, the adoption of a real-time physically based-system makes it possible to realistically express dynamic simulations. In the large scale, the visual expression of such effects of destroying is satisfying enough, but most common programs of those effects fail to maximize visual effect generated with the cutting of small materials. Besides, to perform a heavy simulation process needs high-performance hardware and programs, where high costs would become a serious issue. For this reason, this paper suggests a solution optimized for the effect of small materials-cutting. The progress of each step shows technologies which trace movement with the state of the completion of the character's motions and then cut the material in real-time, finally led to the very realistic visual effect. Besides, using vector inner calculation to follow the motions of object and to realize cutting effect, this study provides an experiment that constructs visual effect for visualization from the basis of mathematical algorithm and it would be certainly as an educational material used for further researches.

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

An Open Source Framework for Visual Tracking of Non-rigid Body with Physics-based Graphical Simulation (물리 기반 그래픽 시뮬레이션을 이용한 비강체 추적 오픈소스 프레임워크)

  • Kim, Changseob;Kim, Hyungmin;Ku, Tae-Hong;Kwon, Tae-soo;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.292-293
    • /
    • 2018
  • 최근 증강현실 산업 분야가 많은 각광을 받고, 시장이 성장함에 따라 보다 쉽게 증강현실을 구현 할 수 있도록 많은 SDK(Software Development Kit)들이 발표되었다. 기존에 발표 된 SDK들이 대부분 강체 추적만을 제공한다. 이는 현재 추적 알고리즘의 기반이 되는 이론이 강체에 한정되어 있기 때문이다. 그러나 제안하는 프레임워크는 강체 추적뿐만 아니라 비강체 추적 또한 가능하다. 이를 위하여, 제안하는 프레임워크는 증강현실의 핵심 기술인 추적 엔진과 보다 넓은 확장성을 가지도록 추적하고자 하는 물체를 사전에 분석하고 실시간으로 모델 변형 정보를 추정하는 시뮬레이션 엔진으로 구성된다. 추적 엔진은 기본적으로 물체의 표면에 존재하는 특징점 정보를 이용하여 추적을 진행 하되, 비강체 추적을 위하여 시뮬레이션 엔진의 도움을 받는 형태로 구성된다. 시뮬레이션 엔진에서는 물체의 역학 파라미터를 추정하여 이를 추적을 진행 할 때, 추적 엔진의 물체 표면 특징점 정보를 이용하여 물체의 변형 정보를 추정한다. 또한 제안하는 프레임워크는 성능 상의 장점 외에도 오픈소스로 공개되기에 국내 증강현실 시장 성장에 발판이 될 것으로 기대된다.

  • PDF

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

Identification of Muscle Forces and Activation of Quadriceps Femoris Muscles of Healthy Adults Considering Knee Damping Effects during Patellar Tendon Reflex (건강한 성인의 슬개건 반사 시 무릎 감쇠효과를 고려한 대퇴사두근의 근력 및 근활성도 예측)

  • Kang, Moon Jeong;Jo, Young Nam;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • Most analytical models of the human body have focused on conscious responses. A patellar tendon reflex, a representative example of spinal reflexes, occurs without a neural command. Muscle forces and activation of the quadriceps femoris muscles in healthy adults during patellar tendon reflex are identified in this study. The model is assumed to move in the sagittal plane, and the thigh and the trunk are assumed to be fixed in a sitting position so that the shank can move similar to a pendulum. The knee joint is modeled as a revolute joint, and the ankle joint is modeled as a fixed joint so that the shank and the foot can be regarded as one rigid body. Muscle forces are calculated following the inverse dynamic approach. Kinematic data obtained from an experiment (Mamizuka, 2007) are used as input data. Muscle activations are identified using a Hill-type muscle model. The obtained simulation results are compared with experimental results for validating the model and the underlying assumptions.

A Suppression of Residual Vibration on the Flexible Structures by Input Shaping (입력설계기법에 의한 유연구조물의 잔류진동제어)

  • Park, Myoungho;Han, Myoungseok;Park, Sungjong
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.364-380
    • /
    • 2006
  • This paper presents a procedure for designing command to maneuver flexible structure with very little residual vibration, even in the presence of modeling errors. For the open loop maneuver, the various shaped profiles using multiple step inputs delayed in time are considered for robustness and compared with the responses of rigid body and flexible body in virtue of simulations and experiments. Input shaping generates vibration-reducing shaped commands through convolution of an impulse sequence with the desired command. A flexible model with a cylindrical hub and four symmetric appendages is considered to examine the responses to real plant, and to illustrate the effectiveness of the proposed shapers. The appendages are long and flexible, leading to low frequency vibration under any control action. It is shown by a series of simulation that a properly designed feedback controller with input shaper performs well, as compared with open loop controller with input shaper. The control objective is to achieve a fast settling time of residual vibration to flexible structure and robustness (insensitivity)to plant uncertainty, to eliminate residual vibration.

Research on Intelligent Game Character through Performance Enhancements of Physics Engine in Computer Games (컴퓨터 게임을 위한 물리 엔진의 성능 향상 및 이를 적용한 지능적인 게임 캐릭터에 관한 연구)

  • Choi Jong-Hwa;Shin Dong-Kyoo;Shin Dong-Il
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.15-20
    • /
    • 2006
  • This paper describes research on intelligent game character through performance enhancements of physics engine in computer games. The algorithm that recognizes the physics situation uses momentum back-propagation neural networks. Also, we present an experiment and its results, integration methods that display optimum performance based on the physics situation. In this experiment on integration methods, the Euler method was shown to produce the best results in terms of fps in a simulation environment with collision detection. Simulation with collision detection was shown similar fps for all three methods and the Runge-kutta method was shown the greatest accuracy. In the experiment on physics situation recognition, a physics situation recognition algorithm where the number of input layers (number of physical parameters) and output layers (destruction value for the master car) is fixed has shown the best performance when the number of hidden layers is 3 and the learning count number is 30,000. Since we tested with rigid bodies only, we are currently studying efficient physics situation recognition for soft body objects.

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.