• Title/Summary/Keyword: right quasi-regular element

Search Result 5, Processing Time 0.039 seconds

A KIND OF NORMALITY RELATED TO REGULAR ELEMENTS

  • Huang, Juan;Piao, Zhelin
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.93-103
    • /
    • 2020
  • This article concerns a property of Abelain π-regular rings. A ring R shall be called right quasi-DR if for every a ∈ R there exists n ≥ 1 such that C(R)an ⊆ aR, where C(R) means the monoid of regular elements in R. The relations between the right quasi-DR property and near ring theoretic properties are investigated. We next show that the class of right quasi-DR rings is quite large.

CHARACTERIZATIONS OF SOME CLASSES OF $\Gamma$-SEMIGROUPS

  • Kwon, Young-In
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.393-397
    • /
    • 1998
  • The author obtains ideal-theoretical characterizations of the following two classes of $\Gamma$-semigroups; (1) regular $\Gamma$-semigroups; (2) $\Gamma$-semigroups that are both regular and intra-regular.

  • PDF

ON A QUASI-POWER MODULE

  • PARK CHIN HONG;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.679-687
    • /
    • 2005
  • In this paper we shall give a new definition for a quasi-power module P(M) and discuss some properties for P(M). The quasi-power module P(M) is a direct sum of invertible quasi-submodules C(H)'s of P(M) and then the quasi-submodule C(H) is also a direct sum of strongly cyclic quasi-submodules of C(H). When M is a quasi-perfect right R-module, we shall see that the quasi-power module P(M) is invertible.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

Two More Radicals for Right Near-Rings: The Right Jacobson Radicals of Type-1 and 2

  • Rao, Ravi Srinivasa;Prasad, K. Siva
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.603-613
    • /
    • 2006
  • Near-rings considered are right near-rings and R is a near-ring. $J_0^r(R)$, the right Jacobson radical of R of type-0, was introduced and studied by the present authors. In this paper $J_1^r(R)$ and $J_2^r(R)$, the right Jacobson radicals of R of type-1 and type-2 are introduced. It is proved that both $J_1^r$ and $J_2^r$ are radicals for near-rings and $J_0^r(R){\subseteq}J_1^r(R){\subseteq}J_2^r(R)$. Unlike the left Jacobson radical classes, the right Jacobson radical class of type-2 contains $M_0(G)$ for many of the finite groups G. Depending on the structure of G, $M_0(G)$ belongs to different right Jacobson radical classes of near-rings. Also unlike left Jacobson-type radicals, the constant part of R is contained in every right 1-modular (2-modular) right ideal of R. For any family of near-rings $R_i$, $i{\in}I$, $J_{\nu}^r({\oplus}_{i{\in}I}R_i)={\oplus}_{i{\in}I}J_{\nu}^r(R_i)$, ${\nu}{\in}\{1,2\}$. Moreover, under certain conditions, for an invariant subnear-ring S of a d.g. near-ring R it is shown that $J_2^r(S)=S{\cap}J_2^r(R)$.

  • PDF