• Title/Summary/Keyword: right UN-transitive ring

Search Result 1, Processing Time 0.015 seconds

The Relation Between Units and Nilpotents

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.213-227
    • /
    • 2022
  • We discuss the relation between units and nilpotents of a ring, concentrating on the transitivity of units on nilpotents under regular group actions. We first prove that for a ring R, if U(R) is right transitive on N(R), then Köthe's conjecture holds for R, where U(R) and N(R) are the group of all units and the set of all nilpotents in R, respectively. A ring is called right UN-transitive if it satisfies this transitivity, as a generalization, a ring is called unilpotent-IFP if aU(R) ⊆ N(R) for all a ∈ N(R). We study the structures of right UN-transitive and unilpotent-IFP rings in relation to radicals, NI rings, unit-IFP rings, matrix rings and polynomial rings.