• Title/Summary/Keyword: ridge-runnel

Search Result 4, Processing Time 0.019 seconds

Observation of Ridge-Runnel and Ripples in Mongsanpo Intertidal Flat by Satellite SAR Imagery (인공위성 SAR 영상을 이용한 몽산포 조간대의 Ridge-Runnel 및 연흔 관찰)

  • Jang, So-Yeong;Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • In this study, we analyzed ridge-runnel structure and ripple marks by using Envisat ASAR, JERS-1 SAR images and in-situ data in Mongsanpo intertidal flat located in Taean-Gun, Korea. A group of light-and-dark lines parallel to the shoreline, alternating 3-5 times, were observed in the intertidal flat in Envisat ASAR images. The patterns are related to ridge-runnel structure in the intertidal flat exposed to air. Well-drained runnels, typically with ripple marks, showed strong backscattering while runnels submerged by surface water or ridges, typically smooth with no ripple, have weak backscattering coefficients in Envisat ASAR images. In JERS-1 SAR images, however, the backscattering was very low on the entire intertidal flat and no ridge-runnel structure could be observed. The wavelengths of ripple marks measured from in-situ observations have ranges from 4 to 10 cm that satisfies the Bragg scattering condition of the 1st-order in Envisat ASAR images operating in C-band, but not in JERS-1 SAR that used L-band. Through this study using SAR images, we could successfully analyze the sedimentary conditions of intertidal flats with ridge-runnel and ripple marks which are not easily observed by optical sensors. It is expected that the results of this study with SAR images will contribute to the sedimentary research over intertidal flats.

Macrotidal Beach Classifications Considering Beach Profiles and Changes: The Case of Beaches in Taean Region (2017-2018) (지형형태와 변화를 반영한 대조차 해빈 분류: 태안지역 해빈을 사례로(2017-2018))

  • Kim, Chan Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.47-65
    • /
    • 2019
  • A case study was conducted in Taean region to seek a more detailed macrotidal beach classification than existing beach classification models (Masselink and Short, 1993). Seepage and ridge & runnel were used for classification. On 20 beaches, 68 transects were surveyed 5 times using VRS-GPS. Cross-section area from the transect profiles, mean grain size from sediment analysis, significant wave height from Swan-wave modeling and beach embaymentization from aerial photograph analysis were used to identify the characteristics of the individual types. The transects were classified into 5 types in Taean region; Type 1: low tidal terrace, Type 2: low tidal terrace & ridge, Type 3: dissipative, Type 4: seasonal ridge, and Type 5: ridge & runnel. Generally, seepage was related to coarse sediment size and ridge & runnel was related to high significant wave height. Each type has different characteristics and there was a tendency between the types. The low tidal terrace type had coarse sediments, because this type is excluded from the littoral cell. In this study, the ridge and runnel type could be applied to the classification because the study area is limited only to the macrotidal environment in Taean region.

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

A Study on the Transport Mechanism of Tidal Beach Sediments I. Deukryang Bay, South Coast of Korea (조간대성 해빈 퇴적물의 이동양상에 관한 연구 I. 한국 남해안의 득량만)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho;Cho, Yeong-Gil;Shin, Sang-Eun;Eun, Go-Yo-Na
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 2006
  • In order to understand the transport mechanism of tidal beach sediments in Deukryang Bay, south coast of Korea, beach profiles, surface sediments, sedimentation rates and hydrodynamic conditions have been investigated. The beach is composed of a steep beach face and gentle low-tide terrace, showing general morphologic characteristics of tide dominated beach. Central beach face of an indented coast becomes flattened in summer, but ridge and runnel system developed in other seasons makes the beach profile rather irregular. These seasonal variations of beach profiles and sedimentation rate indicate that beach sedimentation is mainly controlled by both tide and wave processes. Erosion is prevalent in winter when strong wind wave is dominant, while deposition is dominant in other seasons. However, central beach showed an apparent erosional phase in summer. This is caused by strong waves induced by southerly strong winds occurring ephemerally during the summer. On the other hand, sedimentation rates are -89.2 mm/yr on the central beach and 60.5 mm/yr and 38.2 mm/yr on the sides. This result suggests that sediments are eroded on the central beach and subsequently transported to the both sides. Therefore, the central part of Sumun beach, used as a beach bathing site, will be continuously eroded, if nearby dyke continues to prevent the sediment supply from sources.