• Title/Summary/Keyword: rice transformation

Search Result 124, Processing Time 0.025 seconds

Studies on the Transformation of Crop Plants. IV. Biochemical Characteristics of Embryogenic Callus in Rice (곡물류의 형질전환 유도에 관한 연구 (IV) 벼 배발생 세포의 생화학적 특징)

  • 정병균
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.377-382
    • /
    • 1993
  • Rice (Oryza saliva L.) calli containing both embryogenic callus (EC) and non embryogenic callus (NEC) regions were initiated from the mature seed on MS medium supplemented with 2.0 mg/L 2,4-D, 0.5 mg/L kinetin. The calli were developed into two callus type which can be distinguished by visual examination depending on color and appearance. In order to illucidate the polypeptide composition between EC and NEC, the total protein extracted from two types of callus was analysed by electrophoresis. By one-dimesional anlaysis of SDS-PAGE and Isoelectric focusing, several protein bands showed quantitative and qualitative difference in each type of callus. The further analysis of the total protein with two-dimensional electrophoresis showed at least 20 EC specific protein and 10 NE specific protein. Also 3 specific protein spots showing micro heterogeneity of 90, 65, 50 kD were detected in EC, while a series of acidic heterologous protein spots were visualized in NEC.in NEC.

  • PDF

Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

  • Hwang, In Sun;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1), which is associated with fumonisin B1 bio-synthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco

  • Hasthanasombut, Supaporn;Ntui, Valentine;Supaibulwatana, Kanyaratt;Mii, Masahiro;Nakamura, Ikuo
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2010
  • Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of $T_2$ progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.

Structure and expression analysis of the OsCam1-1 calmodulin gene from Oryza sativa L.

  • Phean-o-pas, Srivilai;Limpaseni, Tipaporn;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.771-777
    • /
    • 2008
  • Calmodulin (CaM) proteins, members of the EF-hand family of $Ca^{2+}$-binding proteins, represent important relays in plant calcium signals. Here, OsCam1-1 was isolated by PCR amplification from the rice genome. The gene contains an ORF of 450 base pairs with a single intron at the same position found in other plant Cam genes. A promoter region with a TATA box at position-26 was predicted and fused to a gus reporter gene, and this construct was used to produce transgenic rice by Agrobacterium-mediated transformation. GUS activity was observed in all organs examined and throughout tissues in cross-sections, but activity was strongest in the vascular bundles of leaves and the vascular cylinders of roots. To examine the properties of OsCaM1-1, the encoding cDNA was expressed in Escherichia coli. The electrophoretic mobility shift when incubated with $Ca^{2+}$ indicates that recombinant OsCaM1-1 is a functional $Ca^{2+}$-binding protein. In addition, OsCaM1-1 bound the CaMKII target peptide confirming its likely functionality as a calmodulin.

Genetic Variation of Rice Populations Estimated Using nrDNA ITS Region Sequence

  • Wang, Dong;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • The rice belonging to Oryza sativa is not only has significant economic importance, for it is the major source of nutrition for about 3 billion all around the world. But also plays a vital role as a model organism, because it has a number of advantages to be a model plant, such as efficient transformation system and small genome size. Many methods and techniques have been conducted to attempt to distinguish different Oryza sativa species, such as amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and so on. However, studies using sequence analysis of internal transcribed spacer (ITS), a region of ribosomal RNA has not been reported until now. This study was undertaken with an aim to understand the phylogenetic relationships among sixteen isolates of Oryza sativa collected from abroad and fifteen isolates collected from Korea, using ribosomal RNA (rRNA) internal transcribed spacer (ITS) sequences to compare the phylogeny relationships among different Oryza sativa species. The size variation obtained among sequenced nuclear ribosomal DNA (nrDNA) ITS region ranged from 515bp to 1000bp. The highest interspecific genetic distance (GD) was found between Sfejare 45 (FR12) and Anapuruna (FR15). Taebong isolate showed the least dissimilarity of the ITS region sequence with other thirty isolates. This consequence will help us further understanding molecular diversification in intra-species population and their phylogenetic analysis.

Inheritance of Herbicide (glufosinate) Resistance in Transgenic Rice Plant through Anther Culture

  • Kang, Hyeon-Jung;Kim, Hyun-Soon;Nam, Jeong-Kwon;Lee, Young-Tae;Lee, Seung-Yeob;Kim, Chung-Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.211-214
    • /
    • 2008
  • Haploid system by anther culture allows the development of homozygous lines when doubled. The response of anther culture to Basta (glufosinate) resistance was investigated on transgenic plants (cv. Anjungbyeo) in order to identify inheritance of bar gene associated with Basta. Most of the regenerated transgenic plants were sterile, and only a few plants produced viable seeds ($A_1$) in the greenhouse. The bar gene was analysis by PCR in basta resistant transgenic plant ($TA_0$). The transgenic seeds ($A_1$) were significantly germinated in Basta solution compared with non-transformed seeds. As a result of anther culture, in regenerated haploid plants, segregation ratio was 1:1 in five of eight cross combinations. In diploid plants, segregation ratio was 1:1 in seven of eight cross combinations. Although there was some differences in the cross combinations, most of the combinations had 1:1 segregation ratio which supports the theory. The difference may be a result of the small sample size or the difference of anther culture response caused by genotypic difference. Hence, when many cross combinations were anther-cultured the results would support the theory.

Rapid Agrobacterium-mediated genetic rice transformation method using liquid media (액체배양을 이용한 단기 벼 형질전환 방법)

  • Yang, Dae-Hwa;Chang, Ahn-Cheol;Ahn, Il-Pyung;Kim, Hae-Jung;Kim, Dong-Hern;Lee, Hyo-Yeon;Suh, Seok Cheol
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Rice is one of the most important cereal crops as a model plant for functional genomics of monocotyledons and usually transformed using Agrobacterium tumefaciens. However, the transformation's process using previous method is still time consuming and uneconomical, low efficiency. In this study, we established a new method by modifying the general Agrobacterium protocol especially in the infection and co-cultivation, Agrobacterium elimination, infected calli's selection steps using liquid media. We directly inoculated Agrobacterium containing a ZjLsL gene under the control of constitutive promoter into the 1- to 3-week-old rice calli derived from mature seeds. After 3 days of co-cultivation, the infected calli were transferred onto liquid media of Agrobacterium elimination and calli's selection for 3 days. The calli were transferred to calli's growth solid media for 14 days and then the calli transferred to shoot induction and root induction media. Putative transformants were initially selected on the medium containing phosphinothricin, and the PAT protein verified by PAT strip test. This method in this study would lead to reduction of substantial labor and time to generate transgenic plants.

Regeneration of Fertile Transgenic Rice Plane from a Korean Cultivar, Nakdongbyeo (한국 재배종 낙동벼에서 임성 형질전환식물체의 재분화)

  • Soo In LEE;Hyun Jin CHUN;Chae Oh LIM;Jeong Dong BAHK;Moo Je CHO
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 1995
  • Rice is one of the most successful monocot in regenerating fertile and genetically stable transgenic plants. However there is no report of a rice line developed in Korea that can be used for regeneration of fertile and genetically stable transformants. In this paper we first demonstrate that a Korean variety Nakdongbyeo, is suitable to obtain transgenic rice plants. Protoplasts from embryogenic suspension cultures were co-transformed with HPT (hygromycin phosphotransferase) and GUS ($\beta$-glucuronidase) genes in separate plasmids in the presence of PEG (polyethylene glycol). In 5 independent experiment, the average frequency of calli showing hygromycin resistance were 1.73%. Plantlets were regenerated from the Hy $g^{R}$ calli. The average efficiency of plantlet regeneration was apprbximately 27%. Based on the GUS activities of hygromycin resistant calli, ca.35% of the resistant calli carried active GUS genes. The R0 transgenic plantlets were grown to maturity and Rl seeds were obtained. By examining the in siぉ activity of GUS in Rl seeds and seedlings, we confirmed that the GUS transgene driven by a CaMV 35S (cauliflower mosaic virus) promoter showed proper expression patterns. We also confirmed Mendelian segregation of the HPT transgene in the Rl generation.n.

  • PDF

Comparison of Agrobacterium-mediated Transformation Efficiency in 43 Korean Wheat Cultivars (국내 밀 43개 품종에 대한 아그로박테리움 형질전환 효율성 검정)

  • Jae Yoon Kim;Geon Hee Lee;Ha Neul Lee;Do Yoon Hyun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.138-147
    • /
    • 2024
  • Agrobacterium-mediated transformation (AMT) is a method that allows for the stable integration of DNA fragments into the plant genome. Transgenic plants generated through AMT typically exhibit a lower copy number of the transgene compared to those induced by particle bombardment. Furthermore, AMT offers a straightforward and efficient approach for generating transgenic plants. While the transformation efficiency of wheat is comparatively lower than that of other monocot plants such as Rice (Oryza sativa L.) and Maize (Zea mays L.), the cultivars 'Bobwhites' and 'Fielder' are commonly employed for wheat transformation. To date, there have been no reported instances of successful development of transgenic plants using Korean wheat varieties through AMT. This study aims to assess the transformation efficiency of 43 Korean wheat cultivars using the GUS assay, with the goal of identifying suitable Korean wheat cultivars for AMT. The pCAMBIA1301 vector, carrying the β-glucuronidase (GUS) gene, was incorporated into Agrobacterium strain EH105. Following the inoculation of Agrobacterium into immature embryos, GUS assays were conducted 'Saeol', 'Jopum', and 'Jonong' showed 100% (the number of embryos showing GUS spots/the number of embryos used for AMT) among 43 cultivars. In addition, cultivars with more than 70% were 'Saekeumgang', 'Jojung', 'Tapdong', 'Anbaek', 'Dabun', 'Sugang', 'Keumgang', 'Jeokjung', 'Seodun', 'Joeun', 'Dajung', and 'Baekjung'. It seems that the 15 cultivars above showed the possibility of using AMT. On the other hand, 'Yeonbaek', 'Goso', 'Baekgang', and 'Johan' showed less than 20% and GUS spots were not observed in 'Gru', 'Gobun', 'Milseong', and 'Shinmichal-1'. This study explores transient GUS expression in Korean wheat cultivars seven days after AMT. The observed initial high efficiency of transient transformation suggests the potential for subsequent stable transformation efficiency. Korean wheat cultivars demonstrating elevated transient transformation efficiency could serve as promising candidates for the development of stable transgenic wheat.

The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

  • Choi, Hak Joo;Kim, Eun A;Kim, Dong Hee;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.256-261
    • /
    • 2014
  • A ${\beta}$-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, $F_2$, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside $F_2$ and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract ${\rightarrow}Rd{\rightarrow}F_2{\rightarrow}$ compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.