• Title/Summary/Keyword: rice plant

Search Result 3,598, Processing Time 0.037 seconds

Rice (Oryza sativa L.) Growth Promotion by Various Plant Extracts Produced Using Different Extraction Methods

  • Ei Ei;Hyun Hwa Park;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.53-53
    • /
    • 2022
  • Modem agricultural production needs to provide sustainable management practices that are eco-friendly and low cost. Plant extracts are a cost-effective and environmentally friendly alternative to synthetic plant growth regulators. This study was therefore carried out to investigate the effects of various plant extracts produced using different extraction methods on the vegetative growth of rice under laboratory and greenhouse conditions. For this study, seventeen plant extracts were made from plant species such as leaves of M. arvense, C. asiatica, M. oleifera, V. radiata, V. unguiculate, P. guajava, A. vera, and A. tuberosum, aboveground plant parts of C. rotundus, M. sativa, and P. frutescens, roots of R. undulatum, tubers of A. sativum, leaves and stems of G. max (cv. Taegwang) as well as rice straw and hulls (cv. Hopyeong). As a test crop, we applied these extracts to rice plants. For the purpose of making our extracts, some plant materials and species were collected in fields and others were purchased from Chonnam Hanyaknonghyup Cooperation (South Korea). Leaves, roots, and aboveground plant parts of plant species were dried, ground, extracted (water, boiling water and ethanol) and fermented. Rice growth promotion effects were determined using plant extracts at 0, 0.05, 0.1, 0.5, and 1% concentrations under petri dish conditions. Seven selected plant extracts were applied to rice seeds with soil drench application or seedling at 3-4 leaf stages with soil and foliar applications under greenhouse conditions. For comparison with extracts, we used urea at 0.6%. Of the 17 water extracts used in this study, 10 extracts reduced rice growth, but the other 7 extracts (P. guajava, A. vera, A. tuberosum, M. sativa, A. sativum, and G. max) increased growth by 40-60% on compared to the control in Petri dish bioassay. Thus, these 7 extracts were selected for further study. Under greenhouse conditions, rice growth also increased by 20-40% when the same 7 extracts were applied to rice seeds using soil drench application. Furthermore, at the 3-4 leaf stage rice growth also increased 30-80% or 30-60% when the same 7 extracts were applied using soil and foliar applications. Overall, the 7 extracts produced higher rates of growth promotion when soil drench application was used than when foliar application was used. In the case of boiling water and ethanol extracts, rice growth increased only 20% in response to both soil drench and foliar application of the same 7 extracts. Rice growth promotion was greater when extracts were produced using water extraction method than boiling water and ethanol extraction methods. Most notably, the 7 water extracts used in this study produced higher rates of growth promotion than urea at 0.6% which is typically used for crop growth promotion. Overall, the 7 water extracts when applied using soil drenching method can be used as effective growth promotors of rice in organic agriculture.

  • PDF

Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

  • Hossain, Mohammad Tofajjal;Khan, Ajmal;Chung, Eu Jin;Rashid, Md. Harun-Or;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.228-241
    • /
    • 2016
  • In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension ($2.0{\times}10^7cfu/ml$) to the rice rhizosphere reduced bakanae severity by 46-78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway.

High-frequency plant regeneration from transgenic rice expressing Arabidopsis thaliana Bax Inhibitor (AtBI-1) tissue cultures

  • Cho, A-Ra;Lee, Dong-Kil;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • Genetic transformation was affected by material of explant, age of callus, and medium of regeneration. Two rice seed cultivars (Ilpum and Baekjinju) and mediums were investigated in this study for enhancing regeneration of transgenic rice expressed AtBI-1 gene encoding the Arabidopsis thaliana Bax inhibitor. Regeneration rate of Ilpum rice transformant in gelrite of 5 and 8 g were 27.4% and 18.0%, respectively. In Baekjinju, regeneration rate of transformant was 5.4% and 4.3% in 5 and 8 g gelrite, respectively. The highest number of transformant plant in this study was regenerated from Ilpum cultivar on MS medium (30.4%) and was applied for the subsequent experiment. The callus regeneration rate of transformant were 40.7% in callus infection of up-side, it was higher regeneration then in the down-side (3.9%). The regeneration rate of callus of 25 days and 35 days were 14.7% and 38.6%, respectively. The most important application of this work is in genetic transformation of rice, particularly for improvement transgenic plant tissue culture protocol with high frequency of plant regeneration.

Molecular Analysis of Rice Plants Harboring an Ac/Ds Transposable Element-Mediated Gene Trapping System

  • Hang Gyeong;Mi Sook Choe;Sung-Ho Lee;Sung Han Park;Hyuk Kim;Ja Choon Koo;No Youl Kim;Su Hyun Park;Jeung Joo Lee
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.17-20
    • /
    • 1999
  • In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analyzed in order to evaluate the gene-tagging efficiency. The 3'end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3'end of the Ds in rice. Nearly 80% of Ds elements wered excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds that underwent secondary transposition in the later cultures. 8% of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybriodization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a largee scale mutagenesis using a heterologous Ac/Ds family in rice.

  • PDF

Rice functional genomics using T-DNA mutants (T-DNA 돌연변이를 이용한 벼 기능 유전체 연구)

  • Ryu, Hak-Seung;Ryoo, Na-Yeon;Jung, Ki-Hong;An, Gynheung;Jeon, Jong-Seong
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.133-143
    • /
    • 2010
  • Rice (Oryza sativa) is a major cereal crop that has been developed as a monocot model species. In past decades rice researchers have established valuable resources for functional genomics in rice, such as complete genome sequencing, high-density genetic maps, a full length cDNA database, genome-wide transcriptome data, and a large number of mutants. Of these, rice mutant lines are very important to definitively determine functions of genes associated with valuable agronomic traits. In this review we summarize the progress of functional genomics approaches in rice using T-DNA mutants.

Effect of Rice Downy Mildew (Sclerophthora macrospora) on Rice Growth and Screening of Disease Resistance of Cultivars (벼 누른오갈병(Sclerophthora macrospora) 발생이 벼 생육에 미치는 영향 및 병 저항성 품종 검정)

  • Lee, Young-Hwan;Cha, Kwang-Hong;Ko, Sug-Ju;Park, Ki-Beum;Kim, Young-Cheol
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.52-56
    • /
    • 2003
  • It was conducted to investigate the effect of rice downy mildew (RDM) infection to plant growth and yield components in water seeding stage, and to screen of varietal resistance to downy mildew. Being infected by rice downy mildew, chlorotic spot appeared in the leaf and leaf length was shortened. As the infected rice was growing, internode was not elongated properly and was deformed, and then panicle was not arised or mal-formed. Plant height of infected rice was shortened at all growth stage, and while the number of tillers of infected rice was more decreased than that of healthy plant before maximum tillering stage, and that of infected rice was more increased after heading stage. While the number of internode of infected tiller was much increased than that of healthy tiller internode length of infected tiller was shorter. As the rice infected by RDM severely, the number of panicles per square meter and ripening of rice was more decreased and yield of rice was extremely much decreased. As result of the varietal resistance screening with rice seedling, Geyh-wabyeo and Donjinbyeo were resistant varieties to downy mildew.

GUS Expression by CaMV 35S and Rice Act1 Promoters in Transgenic Rice

  • Kwang-Woong Lee
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.371-380
    • /
    • 1994
  • To determine the patterns and the levels of expression of the cauliflower mosaic virus (CaMV 35S) promoter and the rice actin 1 (Act1) promoter in rice, transgenic rice plants containing CaMV 35S-$\beta$-glucuronidase (GUS) and Act1-GUS constructs were generated and examined by fluorometric and histochemical analyses. The fluorometric analysis of stably transformed calluses showed that the activity of the rice Act1 promoter was stronger than that of the CaMV 35S promoter in rice cells. In a histochemcial study of the transgenic rices, it was shown that the GUS activity directed by the CaMV 35S promoter was localized mainly in parenchymal cells of vascular tissues of leaves and roots and mesophyll cells of leaves. These results are similar to those of potato, a dicot plant. In contrast, rice plant transformed with Act1-GUS fusion construct revealed strong GUS activity in parenchymal cells of vascular tissue, mesophyll cells, epidermal cells, bulliform cells, guard subsidiary cells of leaves and most cells of the root, suggesting that the rice Act1 promoter is more constitutive than the CaMV 35S promoter. It was also confirmed that in both types of transgenic rice little or no staining was localized in metaxylen tracheary elements of vascular tissue from leaves or roots. These results indicate that the rice Act1 promoter can be utilized more successfully for expression of a variety of foreign gene in rice than the CaMV 35S promoter.

  • PDF

Outbreak of Rice Panicle Blast in Jeonbuk Province of Korea in 2021

  • Hyunjung, Chung;Woo-Il, Lee;Soo Yeon, Choi;Nak-Jung, Choi;Sang-Min, Kim;Ju-Yeon, Yoon;Bong Choon, Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.136-140
    • /
    • 2023
  • Rice panicle blast is one of the most serious diseases threatening stable rice production by causing severe damage to rice yields and quality. The disease is easy to occur under low air temperature and frequent heavy rainfall during the heading season of rice. In 2021, a rice panicle blast severely occurred in the Jeonbuk province of Korea. The incidence area of panicle blast accounted for 27.7% of the rice cultivation area of Jeonbuk province in 2021, which was 13.7-times higher than in 2019 and 2.6-times higher than in 2020. This study evaluated the incidence areas of rice panicle blast in each region of Jeonbuk province in 2021. The weather conditions during the heading season of rice, mainly cultivated rice cultivars, and the race diversity of the Jeonbuk isolates were also investigated. It will provide important information for the effective control of the rice panicle blast.

Optimal Design of Silo System for Drying and Storage of Grains (I)-Simulation Modeling with SLAMSYSTEM

  • Chung, Jong-Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.952-965
    • /
    • 1993
  • A simulation modeling is necessary for the optimal design of a rice processing plant, which consists of a facility (a silo system) of rice drying and storage and a rice mill plant. In a rice processing plant, the production scheduling and the decision on capcity of each unit based on a queuing theory is very important and difficult. In this study a process-oriented simulation model was developed for the design of a rice drying and storage system with SLAMSYSTEM. The simulation model is capable of simulating virtually all the processing activities and provides work schedules which minimize total processing time , mean flow time and bottleneck of the plant system and estimate drying time for a batch in a drying silo. Model results were used for determination the size and capacity of each processing unit and for analyzing the performance of the plant . The developed model was actually applied to construct a grain silo system for rice drying and storage.

  • PDF