• Title/Summary/Keyword: rice paddy field

Search Result 1,183, Processing Time 0.024 seconds

Measurements of Gases Emissions form Agricultural Soils and Their Characteristics with Chamber Technique: Emissions of NO and $N_2O$ (챔버를 이용한 농작지로부터의 기체배출량의 측정과 배출특성연구: 일산화질소(NO)와 아질산가스($N_2O$)의 배출량산정)

  • 김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2001
  • During the growing season from June to August, 2000, the soil NO and $N_2$O fluxes were measured to elucidate characteristics of soil nitrogen emissions from different types of intensively managed agricultural soils at outskirts of Kunsan City, located in the western inland of Korea, Flux measurements were made using a closed chamber technique at two different agricultural fields; one was made from upland field, and the other from rice paddy field. The flux data from upland field were collected for both the green onion and soybean field. Concentrations of NO and $N_2$O inside a flux chamber ar 15 minute sampling interval were measured to determine their soil emissions. Either polyethylene syringes of teflon air bags were used for gas samples of $N_2$O and NO. The analysis of NO and $N_2$O was made using a chemiluminesence NO analyzer and GC-ECD, respectively no later than few hours after sample collection at laboratory. The gas fluxes were varied more than one standard deviation around their means. Relatively high soil gas emissions occurred in the aftermoon for both NO and $N_2$O. A sub-peak for $N_2$O emission was observed in the morning period, but not in the case of NO. NO emissions from rice paddy field were much less than those from upland site. It seems that water layer over the rice paddy field prevents gases from escaping from the soil surface covered with were during the irrigation and acts as a sink of these gases. The NO fluxes resulted from these field experiments were compared to those from grass soil and they were found to be much higher. Diurnal and daily variations of NO and $N_2$O emission were discussed and correlated with the effects of nitrogen fertilizer application on the increase of the level of soil nitrogen availability.

  • PDF

Effects of Rice-Winter Cover Crops Cropping Systems on the Rice Yield and Quality in No-tillage Paddy Field

  • Lee, Young-Han;Son, Daniel;Choe, Zhin-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • The propose of this study was to find out optimum conditions for no-tillage rice-winter cover crops cropping system. A field research was conducted to evaluate productivity and quality of rice cultivars (Dongjinbyeo and Junambybyeo) in rice-winter cover cropping systems at Doo-ryangmyeon., Sacheon, Gyeongsangnam-do, Korea from January 2005 to October 2006. The experimental soil was Juggog series (fine silty, mesic family of Fluvaquentic Eutrndepts). The rice cultivars were experimented under some different high residue farming systems, i.e. no-tillage no treatment (NTNT), no-tillage amended with rice straw (NTRS), no-tillage amended with rye (NTR), no-tillage amended with Chinese milkvetch (NTCMV), tillage no treatment (TNT), and conventional cropping system (Control). The miss-planted rate was 8.8% in 2005 and range of 10.8% to 13.3% in 2006 at NTR, and the other treatments were carried out at miss-planted rate ranging from 1.2% to 5.0%. Tiller numbers of Junambyeo, and Dongjinbyeo in both of years were the highest in Control, and decreased nearly in NTCMV, NTR, NTRS, NTNT, and TNT in that order. The lowest grain yield was observed in TNT both cultivars due to the lower tiller numbers per area, and spikelet numbers per panicle. Also, no-tillage treatments were lower grain yield than control. On the other hand, 1,000-grain weight was lowest in control due to higher tiller numbers per area, and spikelet numbers per panicle. Ripened grain ratio was a similar aspect in all treatments. The palatability score of milled rice was lowest in control while protein content of milled rice was highest in control. The NTCMV was considered an effective sustainable farming practice for rice yield and quality.

Diversity of Heterocystous Filamentous Cyanobacteria (Blue-Green Algae) from Rice Paddy Fields and Their Differential Susceptibility to Ten Fungicides Used in Korea

  • Kim Jeong-Dong;Lee Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.240-246
    • /
    • 2006
  • Cyanobacteria are present abundantly in rice fields and are important in helping to maintain rice fields fertility through nitrogen fixation. Many rice fields soil contain a high density of cyanobactera, and over 50% of cyanobacterial genera that are in existence in rice paddy fields are heterocystous filamentous forms. A total of 142 isolates of heterocystous filamentous cyanobacteria were screened from 100 soil samples taken from rice paddy fields in 10 different locations across Korea, classified according to their morphological characteristics under light microscopy, and their susceptibly to fungicides examined. The collected blue-green alga were classified into a total of 14 genera, including seven genera of filamentous cyanobacteria and seven genera of nonfilamentous cyanobacteria. In particular, 142 heterocystous filamentous cyanobacteria were isolated and classified into six genera, including Anabaena, Nostoc, Calothrix, Cylindrospermum, Nodularia, Scytomena, and Tolypotrix. Yet, over 90% of the heterocystous filamentous cyanobacteria isolated from the rice paddy fields belonged to two genera: Anabaena and Nostoc. The response of 129 $N_2-fixing$ cyanobacterial isolates, 53 Anabaena and 76 Nostoc, to 10 fungicides was then investigated. The results showed that the Nostoc spp. were more tolerant of the ten tested fungicides than the Anabaena spp., and among the ten tested fungicides, benomyl showed the highest acute toxicity to Anabaena spp. and Nostoc spp. In conclusion, although benomyl is a very useful agent to control phytopathogenic fungi, the application of this fungicide to rice fields should be considered because of its toxicity to the heterocystous filamentous cyanobacteria.

Radar Backscattering Measurements of Paddy Rice Field using L, C, and X-band Polarimetric Scatterometer

  • Kim, Yi-Hyun;Hong, Suk-Young;Park, Ji-Sung;Lee, Eun-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.633-636
    • /
    • 2007
  • The objective of this study is to measure backscattering coefficients of paddy rice using L, C, X-bands scatterometer system during a rice growth period. The measurement was conducted at an experimental field located in National Institute of Agricultural Science and Technology (NIAST), Suwon, Korea. The rice cultivar was a kind of Japonica type, called Chuchung. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer (20MHz ${\sim}$ 20GHz), RF cables, and a personal computer that controls frequency, polarization and data storage. The scatterometer system is calibrated using a calibration kit (3.5mm, 85052D). The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ for four polarization (HR, VV, HV, VH), respectively, and compared with rice growth data such as plant height, stem number, biomass, dry weight and LAI that were collected at time of each scatterometer measurement simultaneously.

  • PDF

Controlling effect of environmentally friendly organic materials on the black rice bug, Scotinophara lurida(Hemiptera: Pentatomidae), depending on paddy flooding (논 담수 여부에 따른 유기농업자재의 먹노린재 방제 효과)

  • You Kyoung Lee;Nak-Jung Choi;Ju-Rak Lim;Jun-Yeol Choi;Bo Yoon Seo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.463-472
    • /
    • 2023
  • The insecticidal activities of 27 different commercial products with environmentally friendly organic material(EFOM) against Scotinophara lurida, a major rice pest, were evaluated in the laboratory using spraying methods on plants and insects. Seven plant-derived organic farming materials (EFOM-8, -10, -12, -13, -19, -20, and -26) with high insecticidal effects when sprayed directly on the insect's body rather than on the plant were selected. In the indoor rice pot test, all 7 EFOMs showed an insecticidal rate of over 73.3% under flooding conditions. Notably, EFOM-13 and EFOM-20 demonstrated much higher insecticidal rates, ranging from 1.5 to 1.8 times, in flooding conditions compared to drained conditions. In the semi-paddy field test, EFOM-10 (80% garlic extract), EFOM-13 (62% neem extract), and EFOM-26 (70% sophora extract+28% ethyl alcohol+2% pyrethrum extract) exhibited a higher control value of 88.9% in the irrigated paddy on the 7th day, surpassing the control values in the drained paddy by 1.4 to 1.9 times. The control value in the irrigated rice paddy field sprayed with EFOM-10 reached 86.2% on the 7th day, which was 1.4 times higher than 61.9% in the drained paddy. Taken together, the findings suggest that direct contact of the insect's body with sufficient amounts of spray solution and the maintenance of paddy irrigation can enhance the controlling effect of EFOMs. These findings will be valuable in developing an optimal S. lurida control strategy for application in rice paddy fields in the near future.

Analysis of Purification Capacity of Paddy Fields Using Nutrient Balance (논에서 영양물지 수지를 이용한 논 정화능력 분석)

  • Jung, Jae Woon;Yoon, Kwang Sik;Choi, Woo Jung;Choi, Woo Young;Lee, Soo Hyung;Chang, Nam Ik;Hong, Soon Kang;Joo, Seuk Hun
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • In this study, the nutrient removal capacity of paddy field was investigated. Paddy field was considered as a constructed wetland. The present study was conducted during a cropping period in a rice cultivation area located in Hampyung-gun, Jeollanamdo, Korea. Water balance and mass balance of nutrients were estimated after intensive field monitoring. The surface runoff losses of T-N and T-P were 20.82 kg/ha and 1.55 kg/ha, respectively. The losses were 13.2% and 6.4% of T-N and T-P input into paddy fields, respectively. The results showed that the paddy fields have nutrient removal function.

  • PDF

Absorption , Translocation and Residue of Carbofuran in Miniature Paddy Agrosystem (소형수도재배구중(小型水稻栽培區中) Carbofuran 의 흡수(吸收) 이행(移行) 및 잔류특성(殘留特性))

  • Lee, Young-Deuk;Park, Hyung-Man;Park, Young-Sun;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • A study has been conducted to investigate the behavior of carbofuran in a miniature paddy agrosystem simulated for paddy field. Carbofuran applied onto the paddy water was rapidly absorbed and translocated into rice plants. Carbofuran concentration in rice plant reached its maximum level between 1 to 3 days after treatment and gradually decreased thereafter. Half life of carbofuran concentration in paddy water was 4 days in both application rates of 0.12 and 0.24Kg a.i./10a. Carbofuran residue in paddy soil was gradually dissipated with the half life of 8 and 12 days in 0.12 and 0.24㎏ a.i./l0a respectively. Range of carbofuran residue in brown rice and rice straw harvested from the paddy agrosystem was 0.01∼0.02 ppm and 0.37∼0.57 ppm irrespective of the two application rates respectively.

  • PDF

Water Budget Assessment for Soybean Grown in Paddy Fields Converted to Uplands Using APEX Model (APEX 모델을 이용한 콩 재배 밭 전환 논의 물수지 특성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Myung-Hyun;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.55-64
    • /
    • 2021
  • The expansion of upland crop cultivation in rice paddy fields is recommended by the Korean government to solve the problem of falling rice price and reduction of rice farmer's income due to oversupply of rice. However, water use efficiency is significantly influenced by the land use change from paddy field to upland. Therefore, this study aimed to evaluate the water budget of soybean grown in using APEX (Agricultural Policy and Environmental eXtender) model. The amount of runoff was measured in a test bed located in Iksan, Jeollabu-do and used to calibrate and validate the simulated runoff by APEX model. From 2019 to 2020, the water budget of soybean grown in uplands were estimated and compared with the one grown in paddy fields. The calibration result of AP EX model for runoff showed that R2 (Coefficient of determination) and NSE (Nash-Sutcliffe efficiency) were 0.90 and 0.89, respectively. In addition, the validated results of R2 and NSE were 0.81 and 0.62, respectively. The comparative study of each component in water budget showed that the amounts of evapotranspiration and percolation estimated by APEX model were 549.1 mm and 375.8mm, respectively. The direct runoff amount from upland was 390.1 mm, which was less than that from paddy fields. The average amount of irrigation water was 28.7 mm, which was very small compared to the one from paddy fields.

Detection of frog and aquatic insects by environmental DNA in paddy water ecology

  • Keonhee Kim;Sera Kwon;Alongsaemi Noh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.299-312
    • /
    • 2023
  • The paddy environment is classified as a wetland and occupies a very large proportion of the freshwater environment. It is also ecologically important as a habitat and spawning ground for many aquatic insects and amphibian larvae. However, due to climate change and indiscriminate spraying of pesticides, the rice field ecosystem is continuously threatened. In order to restore ecologically damaged rice paddies in the future, information on organisms living in the rice paddy ecosystem, which can serve as a restoration standard, is needed. The eDNA metabarcoding analysis method is a very effective means of accumulating information on many organisms living in the rice field ecosystem because it can indirectly identify the existence of taxa that are no longer found in the target ecosystem due to different adult life periods or metamorphosis. In this study, genes of four species of frogs and nine species of aquatic insects were also discovered, and some taxa were directly discovered in the field. A large number of taxa have been discovered only by DNA searches, and traditional survey methods have only been able to identify very limited taxa. This eDNA-based paddy field biosearch is expected to be very useful in the investigation of biodiversity in agricultural ecosystems due to its strong analytical resolution.

Distribution of Pesticide Applied with Different Formulations and Rice Growing Stages in Paddy Fields (벼 재배환경에서 생육단계에 따른 제형별 살포농약의 분포특성)

  • Park, Byung-Jun;Park, Sang-Won;Kim, Jin-Kyoung;Park, Kyung-Hun;Kim, Won-Il;Kwon, Oh-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2008
  • To elucidate the exposure of pesticide in agricultural environment and to investigate distribution of pesticide in paddy fields. This experiment was carried out to clarify pesticide distribution in paddy fields applied with different formulations and growing stages. Initial dissipation rate of applied butachlor EW and oxadiazon EC before rice planting were more than 90% within 3 days in paddy fields. The distribution of a.i. in the pesticide formulations tested depended upon the elapsed time at each growing stage of rice plant after application. Most of pesticides applied within 15 days after transplanting of rice seedlings, more than 95%, were located in the surface water and soil regardless of pesticides; butachlor, thiobencarb and molinate GR. The distribution of iprobenfos GR, tricyclazole WP and phenthoate EC, after application 2 hours in middle growing stage (46 days after rice planting) were shown as 16.1, 48.9 and 38.9% in surface water, 83.6, 15.4 and 10.7% in soil, and 0.3, 35.7 and 50.4% in rice plants of paddy fields, respectively. Also tricyclazole WP and phenthoate EC, after application 2 hours in the late rice growing stage (90 days after rice planting) were distributed to 7.8 and 9.8% in surface water, and 21.7 and 5.1% in soil, and 70.5 and 85.1% in rice plants of paddy fields, respectively.