• Title/Summary/Keyword: ribs

Search Result 814, Processing Time 0.032 seconds

Wall-roughness effects of trapezoidal ribs on the flow of open channel (개수로 흐름에서 사다리꼴 돌출줄눈의 벽면조도 효과)

  • Shin, Seung Sook;Park, Sang Deog;Park, Ho Kook
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • The trapezoidal ribs had been installed in the retaining wall in order to reduce to flood damage in the impingement of mountain rivers. In this study, experiments in open channel with the trapezoidal ribs on sidewall were conducted to evaluate the effect of flow resistance by the trapezoidal shape. The hydraulic flow characteristics according to the flow rates were surveyed where the wall roughness is k-type that dimensionless spacings, ${\lambda}_{nv}$, are 6, 9, and 12. The flow-resistance factors such as roughness and friction coefficients increased generally with increase of the spacing of ribs. In high flow rate the friction coefficient showed the maximum value when ${\lambda}_{nv}$ is 9. Though the trapezoidal ribs has the relatively smaller flow resistance compared to the square ribs, their form drag accounted for mean 62% of the total flow resistance. It was confirmed that the optimal spacing of trapezoidal ribs to maximize the effect of flow resistance as the wall roughness increases are 9 to 12 times of the height of trapezoidal ribs.

Effects of vertical ribs protruding from facades on the wind loads of super high-rise buildings

  • Quan, Yong;Hou, Fangchao;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.145-169
    • /
    • 2017
  • The auxiliary structures of a high-rise building, such as balconies, ribs, and grids, are usually much smaller than the whole building; therefore, it is difficult to simulate them on a scaled model during wind tunnel tests, and they are often ignored. However, they may have notable effects on the local or overall wind loads of the building. In the present study, a series of wind pressure wind tunnel tests and high-frequency force balance (HFFB) wind tunnel tests were conducted on rigid models of an actual super high-rise building with vertical ribs protruding from its facades. The effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and the most unfavorable values of the local wind pressure coefficients were investigated by analyzing the distribution of wind pressure coefficients on the facades and the variations of the wind pressure coefficients at the cross section at 2/3 of the building height versus wind direction angle. In addition, the effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and power spectra of the overall aerodynamic force coefficients were studied by analyzing the aerodynamic base moment coefficients. The results show that vertical ribs significantly decrease the most unfavorable suction coefficients in the corner recession regions and edge regions of facades and increase the mean and fluctuating along-wind overall aerodynamic forces.

Effects of Discrete Ribs on Pressure Drop in a Rotating Two-Pass Duct (단락요철이 회전덕트 내 압력강하에 미치는 영향)

  • Kim Kyung-Min;Lee Dong-Hyun;Cho Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.443-450
    • /
    • 2006
  • The present study has been conducted to investigate the effects of rotation on heat/mass transfer and pressure drop characteristics in a two-pass square duct with and without discrete ribs. For stationary cases, the heat/mass transfer on the surfaces with and without discrete ribs is almost the same or reduced. For rotating cases, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, the heat/mass transfer is slightly enhanced due to generating strong gap flow. On the trailing surface of the first pass, however, the heat/mass transfer is much decreased because the gap flow disturbs impingement of main flow. The phenomenon, that is, the heat/mass transfer discrepancy between the leading and trailing surfaces is distinctly presented with the increment of rotation number. The friction losses on each surface with discrete ribs are reduced because the blockage ratio decreases for both non-rotating and rotating cases. Therefore, high thermal performance appears in a duct with discrete ribs.

Mechanical analysis of tunnels supported by yieldable steel ribs in rheological rocks

  • Wu, Kui;Shao, Zhushan;Qin, Su;Zhao, Nannan
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • Yieldable steel ribs have been widely applied in tunnels excavated in rheological rocks. For further understanding the influence of yieldable steel ribs on supporting effect, mechanical behavior of tunnels supported by them in rheological rocks is investigated in this paper. Taking into account the deformation characteristic of yieldable steel ribs, their deformation is divided into three stages. In order to modify the stiffness of yieldable steel ribs in different deformation stages, two stiffness correction factors are introduced in the latter two stages. Viscoelastic analytical solutions for the displacement and pressure in the rock-support interface in each deformation stage are obtained. The reliability of the theoretical analysis is verified by use of numerical simulation. It could be concluded that yieldable steel ribs are able to reduce pressure acting on them without becoming damaged through accommodating the rock deformation. The influence of stiffness correction factor in yielding deformation stage on pressure and displacement could be neglected with it remaining at a low level. Furthermore, there is a linearly descending relationship of pressure with yielding displacement in linear viscoelastic rocks.

Closed-Cell Type Barrier Ribs using Molds Prepared by Inclined UV Lithography

  • Kim, Ki-In;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.571-574
    • /
    • 2004
  • Symmetric closed-cell type barrier ribs of PDP were formed by capillary molding process using molds prepared by inclined UV lithography process. The effects of inclining angle of barrier ribs on the sintering shrinkage and luminance of panel were examined. The results indicate that the barrier ribs of inclined morphology affect the sintering shrinkage and luminance efficiency significantly.

  • PDF

Effect of barrier rib morphologies on luminance of PDP

  • Chang, Tae-Jung;Park, Do-Young;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.727-730
    • /
    • 2004
  • Closed-cell type barrier ribs such as honeycomb, SDR, inverse SDR and waffle types were produced using capillary molding process. Phosphor layers were formed by osmosis coating process on those barrier ribs. Using the rear plate with closed-cell ribs, the luminance and its efficiency was measured. The results demonstrated a significant improvement in efficiency by combining closed-cell type ribs with a new phosphor forming technology

  • PDF

The formation of barrier ribs for PDP by capillary infiltration method

  • Kim, Yong-Ho;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1088-1090
    • /
    • 2002
  • In this study, a new processing route of barrier ribs for the plasma display panels was attempted. A slurry containing ceramic powders for the barrier ribs, binder, hardener, and other additives, was molded into a PDMS mold by capillary infiltration process. The molded slurry was cured prior to mold removal. It was demonstrated that the process can fabricate successfully the cell type barrier ribs of PDP.

  • PDF

In-plane elastic buckling strength of parabolic arch ribs subjected symmetrical loading (대칭 하중을 받는 포물선 아치 리브의 탄성 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.161-171
    • /
    • 2005
  • When the in-plane flexural rigidity is small in relation to the applied load, the arch ribs may buckle to the in-plane direction. Designers should therefore determine the in-plane buckling strength. To determine the buckling strength of arch ribs, designers have to consider the material nonlinear response. But in the case of arch ribs having large slenderness ratio, arch ribs may buckle in the elastic range, and when the arch ribs have low slenderness ratio, elastic buckling strength is useful in the preliminary design. In this paper, elastic buckling strength of arch ribs, which are frequently used in practical design, is studied using nonlinear finite element method. In general, the relation between flexural rigidity and elastic buckling strength is linear. As seen from the results, however, when the arch ribs have low slenderness ratio, the relation between flexural rigidity and elastic buckling strength is nonlinear.

Formulating the Local Displacement and Local Moments of a Plate Stiffened with Open Ribs According to the Loading Sizes (재하 크기에 따른 개단면 리브 보강판의 국부 처짐과 국부 모멘트의 정형화)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.267-278
    • /
    • 2013
  • In this study, stiffened plates with open ribs are analyzed to estimate and formulate the local displacement and local moments according to square loading sizes. For the local behaviors of plates stiffened with rectangular and reverse T ribs, the ratio functions according to the dimensions of stiffened plates are obtained at each square loading size. Analytical results show that values of the basic stiffened plates are different but the ratio functions of each square loading size are similar and the difference of the ratio functions between rectangular ribs and reverse T ribs are small, so the ratio functions can be unified by integrating the loading sizes regardless of the rib type. The application of the unioned ratio functions to L type ribs and rectangular loading shows good accuracies. Therefore, the local behaviors of plates stiffened with open ribs can easily be obtained by using the unioned ratio functions proposed in this study.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.