• Title/Summary/Keyword: rhodamine-B

Search Result 230, Processing Time 0.027 seconds

Adsorption and Photocatalytic Performances of BiOI Nanostructures for Methyl Orange and Rhodamine B: Ag and Ti-Loading Effects

  • Park, Yohan;Sohn, Youngku
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.592-592
    • /
    • 2013
  • We synthesized BiOI nanostructures with various doped-concentrations of Ag (0.1, 1.0, 5.0, 10.0 mol%) and Ti (1.0, 5.0, 10.0, 30.0, 50.0 mol%). They show spherical echinoid-like structures examined by scanning electron microscope. The BET surface areas were measured to be in the range of 40~70 $m^2$/g, which is reduced by doping. The indirect band gap was estimated to be 1.8 eV for undoped BiOI with no change and 1.0 eV increase upon Ag and Ti doping, respectively. The structures were further examined by X-Ray diffraction analysis, FT-IR, and photoluminescence. We also demonstrated adsorption and photocatalytic degradation performances for methyl orange and Rhodamine B on the echinoid-like BiOI structures.

  • PDF

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique (레이저형광여기(LIF)를 이용한 비등온 제트유동의 온도장 측정)

  • Yoon, Jong-Hwan;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1399-1408
    • /
    • 2000
  • A 2-dimensional temperature field measurement technique using PLIF (Planar Laser Induced Fluorescence) was developed and it was applied to an axisymmetric buoyant jet. Rhodamine B was used as a fluorescent dye. Laser light sheet illuminated a two-dimensional cross section of the jet. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured with an optical filter and a CCD camera. The spatial variations of temperature field of buoyant jet were derived using the calibration data between the LIF signal and real temperature. The measured results show that the turbulent jet is more efficient in mixing compared to the transition and laminar jet flows. As the initial flow condition varies from laminar to turbulent flow, the entrainment from ambient fluid increases and temperature decay along the jet center axis becomes larger. In addition to the mean temperature field, the spatial distributions of temperature fluctuations were measured by the PLIF technique and the result shows the shear layer development from the jet nozzle exit.

A Comparison of Efficiency of Decolorizing Rhodamine B using Lab-Scale Photocatalytic Reactors : Slurry Reactor, IWCR and PFBR

  • Na, Young-Soo;Lee, Tae-Kyung;Lee, Song-Woo;Lee, Chang-Han;Kim, Do-Han;Park, Young-Seek;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.157-164
    • /
    • 2001
  • The performance of fluidized-bed reactor with Photomedia, immobilized TiO$_2$ onto the porous ceramic ball using a sol-gel method has been studied in this work. A simple model substrate, dilute Rhodamine B (RhB), was decolorized at room temperature. For the purpose of comparison, the slurry reactor and the Inner Wall Coated Reactor (IWCR) were used. The aim of this work was to develop the photocatalytic fluidized bed reactor (PFBR) through contrasting the photodegradability of various reactors such as the TiO$_2$slurry reactor, the inner-wall coated reactor (IWCR). In this study, the RhB was decolorized in three types of reactor. Even though the reaction rate constant of PFBR was lower than that of slurry reactor, PFBR had the advantages of preventing the wash-out of photocatalyst, so it can be operated continuously.

  • PDF

Synthesis of solar light responsive ZnO/TaON photocatalysts and their photocatalytic activity (태양광 응답형 ZnO/TaON 나노 복합체의 제조 및 광촉매 특성 평가)

  • Kim, Tae-Ho;Jo, Yong-Hyeon;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.256-257
    • /
    • 2014
  • The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate $Ta_2O_5$ with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under $NH_3$ flow (20 ml min.1). The asprepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and $Ta_2O_5$, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2 %) of degradation of Rh. B and the highest reaction rate constant ($0.0137min^{-1}$) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, $Ta_2O_5$, and TaON.

  • PDF

Photodegradation of Rhodamine B in $TiO_2$ suspension

  • Na, Young-Soo;Kim, Ji-Hye;Lee, Tae-Kyung;Lee, Song-Woo;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.149-155
    • /
    • 2001
  • In recent years, rapid technological advances in the textile and dyeing industry have yielded benefits to society but have also generated new and significant environmental problems. The treatment alternatives applicable for the removal of color vary, depending upon the type of dye wastewater Advanced oxidation processes are considered to provide more permanent merits. One of these oxidation treatments attracting much attention is photocatalytic oxidation, which uses TiO$_2$ due to its non-toxic, insoluble liquid as well as a highly reactive nature under UV irradiation. This study sets out to demonstrate the effect of photocatalyst dosage, dye concentrations, pH and light intensity on color removal efficiency under aerobic conditions. The results of this study show Rhodamine B(RhB) was not decolorized when a dye solution was exposed only to air or treated by TiO$_2$ only In the presence of both TiO$_2$ and UV light, however, the presence of RhB decreased up to 95 % within 60minutes. The more addition TiO$_2$ and the more diluted dye solution, showed a higher removal rate.

  • PDF

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

Synthesis of PbMo1-xCrxO4 Oxides Prepared Using Hydrothermal Process and their Photocatalytic Activity (수열합성법에 의한 PbMo1-xCrxO4 산화물의 합성 및 광촉매 활성)

  • Song, Young In;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-718
    • /
    • 2015
  • Both lead molybdate ($PbMoO_4$) and chromium substituted lead molybdate ($PbMo_{1-x}Cr_xO_4$) were successfully synthesized using a conventional hydrothermal method and characterized by XRD, DRS, Raman, SEM and PL. We also investigated the photocatalytic activity of these materials for the decomposition of rhodamine B under UV-visible irradiation. The XRD and Raman results revealed the successful synthesis of well-crystallized $PbMoO_4$ crystals with the diameter of 51-59 nm, regardless of the addition of chromium ion. The DRS spectra of $PbMo_{1-x}Cr_xO_4$ catalysts showed new intensive absorption bands in the visible region. The $PbMoO_4$ catalysts showed the lowest photocatalytic activity and the activity increased with an increase of chromium substitution amounts under visible irradiation. PL peaks appeared at about 540-580 nm for all catalysts and excitonic PL signals were proportional to the photocatalytic activity for the decomposition of rhodamine B.

Delivery of Ti Plasmid into Nicotiana sanderae Protoplasts via Liposomes (Liposome을 이용한 Ti Plasmid의 꽃담배 원형질체내 도입)

  • Lim, Myung-Ho;Jeong, Jae-Dong;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.343-348
    • /
    • 1994
  • Ti plasmid of A. tumefaciens was labeled with $^3H-thymidine$, purified and encapsulated into phosphatidylserine (PS) and PS-cholesterol (Chol; 1 : 1 molar ratio) liposomes by lyophilization-rehydration method. PS was supplemented with 1 mole percent octadecyl rhodamine B for fluorometric measurement of PS. Liposomes entrapping $^3H-Ti plasmid$ were fused with Nicotiana sanderae protoplasts by treating with 5 mM $CaCl_2$ and 10% PEG. The fusion was evidenced by fluorescence microscopic technique. The amounts of Ti plasmid and PS associated with protoplasts were assayed by the radioactivity of $^3H-Ti plasmid$ and by the fluorescence of rhodamine B. About 7.9% of the PS liposome and 7.2% of PS-Chol liposome were fused with protoplasts. During the fusion process, about 30% of the liposomal contents of PS-Chol liposome was leaked, in contrast to about 60% leakage of its contents in PS liposome. Accounting the number of liposomes fused with protoplasts together with the encapsulation efficiency and the leakage of liposomal contents, it was calculated that ca. 1,700 Ti plasmid was transfered into one protoplast by the present method. This result may indicates that the present method transfers enough Ti plasmid into plant protoplast to elicit genetic transformation of plants.

  • PDF

Cadmium Sulphide Nanorods: Synthesis, Characterization and their Photocatalytic Activity

  • Giribabu, Krishnamoorthy;Suresh, Ranganathan;Manigandan, Ramadoss;Vijayaraj, Arunachalam;Prabu, Raju;Narayanan, Vengidusamy
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2910-2916
    • /
    • 2012
  • Cadmium sulphide (CdS) nanorods were prepared by a single precursor thermal decomposition (SPTD) method. The formation of CdS nanorods and their structure, morphology and elemental composition were studied by means of FT-IR, XRD, FE-SEM, HR-TEM and EDAX analysis. Photoluminescence (PL) and lifetime measurements were recorded to study the luminescence properties of the material. The PL spectrum of the CdS nanorods showed one broad peak and four shoulders and the cause for this emission was discussed. The PL emissions from the band edge and deep trap state of the CdS nanorods were studied by lifetime measurements. Further, the synthesized CdS nanorods showed an increase in efficiency of photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The increase in the photocatalytic activity was attributed to the mixed phase of the CdS nanorods.