• 제목/요약/키워드: rhizosphere pseudomonas bacteria

검색결과 68건 처리시간 0.028초

염유집적(鹽類集積) 시설재배지(施設栽培地)의 토양미생물상(土壤微生物相) 평가(評價) (Evaluation of Soil Microflora in Salt Accumulated Soils of Plastic Film House)

  • 권장식;서장선;원항연;신제성
    • 한국토양비료학회지
    • /
    • 제31권2호
    • /
    • pp.204-210
    • /
    • 1998
  • 본 시험은 재배이역(栽培履歷)이 서로 상이한 시설재배지에서의 염류집원적지(鹽類集源積地)와 건전지(健全地)의 미생물상(微生物相)의 생태(生態)를 비교해석(比較解析)하고, 미생물(微生物)적 진단(診斷)에 의한 근권환경(根圈環境)의 동태(動態)와 개량기술(改良技術)을 위한 기초자료를 얻고자 수행하였다. 주요 미생물(微生物)의 분포(分布)는 건전지(健全地)에서 형광성(螢光性) Pseudomonas 속 세균(細菌)의 밀도가 높은반면 염류장해지(鹽類障害地)에서는 병원성(病原性) Fuasarium 속의 밀도가 높고 형광성(螢光性) Pseudomonas 속 세균(細菌)이 낮은 분포밀도(分布密度)를 보였다. 토양중 유기물 함량이 증가할수록 Bacillus 속(屬), 형광성(螢光性) Pseudomonas 속(屬), Enterobacteriaceae 등 세균류(細菌類)의 밀도와 Microbial biomass C함량이 크게 증가하였으며, 토양의 전기전도도(電氣傳導度)(EC)가 $5.1dS\;m^{-1}$ 이상으로 높아지면 미생물(微生物)간의 비율중 세균(細菌)/사상균(絲狀菌)(B/F), 방선균(放線菌)/사상균(絲狀菌)(A/F)의 비율이 현저히 낮아지고 형광성(螢光性) Pseudomonas 속(屬) 세균(細菌)이 급격히 감소하였다. 토양 pH와 세균(細菌)과의 관계는 고도의 정(正)의 상관관계(相關關係)를, 사상균(絲狀菌)과는 부(負)의 상관관계(相關關係)를 보였으며, 토양유기물과 방선균(放線菌), Bacillus 속(屬), Enterobacteriaceae와는 각각 $r=0.226^*$, $r=0.334^{**}$, $r=0.276^{**}$, 치환성 Ca및 치환성 Mg함량과 방선균수(放線菌數)와는 각각 $r=0.334^{**}$, $r=0.352^{**}$, 유기물함량과 Microbial biomass C 함량과는 $R=0.439^{**}$의 유의성(有意性) 있는 상관을 보였다.

  • PDF

Screening of Rhizobacteria for Biological Control of Cucumber Root and Crown Rot Caused by Phytophthora drechsleri

  • Maleki, Mojdeh;Mokhtarnejad, Lachin;Mostafaee, Somayyeh
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.78-84
    • /
    • 2011
  • Antagonistic rhizobacteria, more specifically fluorescent pseudomonads and certain species of Bacillus, are known as biocontrol agents of fungal root diseases of agronomic crops. In this study, 144 bacteria were isolated from cucumber rhizosphere and screened as potential biological control agents against Phytophthora drechsleri, the causal agent of cucumber root rot, in vitro condition. Non-volatile compounds of 23 isolates showed noticeable inhibition zone (> 30%) against P. drechsleri, whereas volatile compounds of 7 isolates could prevent more than 30% of the mycelial growth of the fungus. All promising isolates, except of Pseudomonas flourescens V69, promoted significantly plant growth under in vitro condition. P. flourescens CV69 and V11 exhibited the highest colonization on the root. Results of the greenhouse studies showed that a reduction in disease incidence by use of some strains, and particularly use of strains CV6 and V11 as a soil treatment, exhibited a reduction in disease incidence so that suppressed disease by 85.71 and 69.39% respectively. Pseudomonas flourescens CV6 significantly suppressed disease in comparison to Ridomil fungicide. The use of mixture bacterial strains in the soil inoculated by the fungus resulting in falling down the most of the plants which didn't show significant difference with infected control soils without bacteria.

Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil

  • Jurelevicius, Diogo;Korenblum, Elisa;Casella, Renata;Vital, Ronalt Leite;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.862-870
    • /
    • 2010
  • Cyperus rotundus L. is a perennial herb that was found to be dominating an area in northeast Brazil previously contaminated with petroleum. In order to increase our knowledge of microorganism-plant interactions in phytoremediation, the bacterial community present in the rhizosphere and roots of C. rotundus was evaluated by culture-dependent and molecular approaches. PCR-DGGE analysis based on the 16S rRNA gene showed that the bacterial community in bulk soil, rhizosphere, and root samples had a high degree of similarity. A complex population of alkane-utilizing bacteria and a variable nitrogen-fixing population were observed via PCR-DGGE analysis of alkB and nifH genes, respectively. In addition, two clone libraries were generated from alkB fragments obtained by PCR of bulk and rhizosphere soil DNA samples. Statistical analyses of these libraries showed that the compositions of their respective populations were different in terms of alkB gene sequences. Using culturedependent techniques, 209 bacterial strains were isolated from the rhizosphere and rhizoplane/roots of C. rotundus. Dot-blot analysis showed that 17 strains contained both alkB and nifH gene sequences. Partial 16S rRNA gene sequencing revealed that these strains are affiliated with the genera Bosea, Cupriavidus, Enterobacter, Gordonia, Mycoplana, Pandoraea, Pseudomonas, Rhizobium, and Rhodococcus. These isolates can be considered to have great potential for the phytoremediation of soil with C. rotundus in this tropical soil area.

고추역병의 생물학적 방제를 위한 길항세균의 분리 (Isolation of Antagonistic Bacteria to Phytophthora capsici for Biological Control of Phytophthora blight of Red Pepper)

  • 이용세;최장원;김상달;백형석
    • 생명과학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 1999
  • 고추 역병균에 대한 Pseudomonas속 및 Bacillus속 길항미생물을 역병균과 동일한 서식처인 근권에서 분리하고자 4지역의 고추재배지에서 건전고추의 근권토양을 채취하여 선택배지를 사용하여 분리하였다. Pseudomonas속 237개 Bacillus속 260개 총 497개 균주중 327개 균주는 역병균에 대해 거의 활성이 없거나 역병균의 균사생장을 20$\%$ 이하로 억제시켰으나, Pseudomonas속 8균주와 Bacillus속 4균주는 50%이상 역병균의 균사생장을 억제시켰다. 이들 균주의 활성은 V-8 juice agar보다 TSA에서 높았으며, TSA에서 역병균의 균사생장을 60$\%$ 이상 억제시키는 균주를 선발하여 API system을 사용하여 P. cepacia (P0704, P1201), B. polymyxa (B1101) 및 B. subtilis (B1901)로 동정하였다. 이들 균주의 배양여액은 고추역병균의 유주자발아 및 균사생장을 억제시켜 항균성물질을 생성분비하는 균주로 판단되었다. 고추 역병발생 억제효과를 조사한 결과 P0704가 46.7$\%$ 로 가장 높았으며, 나머지 균주는 26.7$\%$ 에서 13.4$\%$ 로 나타났다.

  • PDF

Deproteinized Mulberry Leaf Juice - A New Media for Growth of Microorganisms

  • Chowdary, N.B.;Naik, V.Nishitha;Sharma, D.D.;Govindaiah
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제5권2호
    • /
    • pp.217-220
    • /
    • 2002
  • Mulberry being a foliage crop is grown extensively for feeding of silkworms and are also used for cattle feeding. These loaves are highly nutritious, which contain various mineral elements and bio-molecules such as carbohydrates, proteins, lipids and other essential amino acids, etc. In the present study, deproteinized mulberry leaf juice was used for preparation of the medium for cultivation of various types of microbes. Results revealed that deproteinized mulberry leaf juice medium is best for isolation of fungi, bacteria and actinomycetes and this medium can be substituted with synthetic media, which are haying the costly ingredients for isolation and identification of bacteria, fungi and actinomycetes. Further, this deproteinized mulberry juice medium can also be used in mass multiplication of useful/beneficial microbes to enhance soil microflora to improve soil fertility and to avoid root diseases. Perspective enterprises can take up the mass multiplication/large-scale production of useful microbes such as Trichoderma, Rhizobium, Pseudomonas and Bacillus to use in mulberry and in other agricultural crops using deproteinized mulberry leaf juice.

Identification and Characterization of Bdellovibrio bacteriovorus, a Predator of Burkholderia glumae

  • Song, Wan-Yeob
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.48-55
    • /
    • 2004
  • Six strains of an obligate predatory bdellovibrio isolate that preys on Burkholderia glumae in rice paddy field water and rhizosphere soil, were identified and characterized. The numbers of Bdellovibrio cells varied from $3.2{\times}10^3$ to $9.2{\times}10^3$ plaque-forming unit/g after enrichment in cells of B. glumae. Prey range tests with six Bdellovibrio strains and 17 prey strains of rice-pathogenic, antibiosis-related, or nitrogen-fixing bacteria resulted in unique predation patterns in related prey cells. Strain BG282 had the widest prey range on 7 plant pathogenic bacteria among the 17 prey strains tested. However, no predation occurred with strains of Azospirillum brasilense, Paenibacillus polymyxa, Pseudomonas fluorescens, P. putida, and Serratia marcescens that are associated with antibiosis or nitrogen fixation in the rice ecosystem. Identification was confirmed by the presence of typical bdelloplast in the prey cells of B. glumae and by a PCR assay using B. bacteriovorus-specific primers. Furthermore, 16S rDNA sequencing of the six bdellovibrio strains showed a homology range of 97.2% to 99.2% to the type strain of B. bacteriovorus.

생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성 (Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098.)

  • 이종태;김동환;도재호;김상달
    • 한국미생물·생명공학회지
    • /
    • 제26권6호
    • /
    • pp.515-522
    • /
    • 1998
  • 길항미생물로 분리.동정된 Pseudomonas sp. 3098이 생산하는 chitinase를 황산암모늄 침전, DEAE-cellulose column chromatography, Bio-Gel P-100에 의한 겔여과, 1차 및 2차 hydroxyapatite column chromatography 과정을 거쳐 회수율 5.8%,정제도 15.7배의 정제효소를 얻었고, 효소의 순도는 SDS-PAGE로 확인하였으며, 분자량은 45kDa으로 추정되었다. 정제된 chitinase의 최적 온도와 pH는 45$^{\circ}C$와 5.0이었고, 정제효소는 pH 5.0~9.0 사이에서 안정하였고, 5$0^{\circ}C$, 3시간 및 6$0^{\circ}C$, 30분까지는 비교적 안정하였다. 금속염 및 화학물질의 영향을 조사한 결과 Fe$^{2+}$, Ag$^{1+}$ 및 단백질변성제인 Hg$^{2+}$ 이온에 의해 효소활성이 크게 저해되었고, p-CMB, iodoacetic acid, urea, 2,4-DNP 및 EDTA에 의해 효소활성이 약간 저해되었다. 기질특이성을 조사한 결과 colloidal chitin 및 shrimp shell 유래의 chitin은 분해가능하였으나 crab shell 유래의 chitin, chitosan등은 분해하지 못하였다. Colloidal chitin에 대한 본 효소의 Km값은 0.11%였고, 분해율은 24시간 반응시 34%였다.

  • PDF

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

The ACC deaminase from rhizobateria promoted resistance of salininty stress in seedling and growth of plant

  • Soh, Byoung-Yul;Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Lee, Kui-Jae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.17-17
    • /
    • 2010
  • Rhizobacteria are a diverse group of free-living soil bacteria that live in plant rhizosphere and colonized the root system. Plant growth-promoting rhizobacteria (PGPR) possessing ACC deaminase (ACCD) can reduce ACC and ethylene in plant tissue and mediated the growth of plants under various stresses including salt stress. ACCD decrease ethylene levels in plant tissue that produce high levels of ethylene in tissue via elevated levels of ACC under salt stress. We selected strains of Pseudomonas sp. possessing ACCD activity for their ability to promote plant growth under salt stress from soil sample collected at Byeonsan, Jeonbuk, South Korea. The Pseudomonas strains possessing ACCD increased the rate of the seedling and growth of chinese cabbage seeds under salt stress. We cloned ACCD gene from P.fluorescens and expressed recombinant protein in Escherichia coli. The active form of recombinant ACCD converted ACC to a-ketobutyrate. The in vivo treatment of recombinant ACCD itself increase the rate of the seedling and growth of Chinese cabbage seeds under salt stress. The polyclonal P.fluorescens anti-ACCD antibody specifically reacted with ACCD originated from Pseudomonas. This indicates that the antibody might act as an important indicator for ACCD driven from Pseudomonas exhibiting plant growth-promoting activity. This study will be useful for identification of newly isolated PGPR containing ACCD and exploioting the ACCD activity from PGPR against various biotic and abiotic stresses.

  • PDF