DOI QR코드

DOI QR Code

Screening of Rhizobacteria for Biological Control of Cucumber Root and Crown Rot Caused by Phytophthora drechsleri

  • Maleki, Mojdeh (Department of plant protection, Islamic Azad University of Varamin-Pishva) ;
  • Mokhtarnejad, Lachin (Department of plant protection, University of Tehran) ;
  • Mostafaee, Somayyeh (Department of plant protection, Islamic Azad University of Varamin-Pishva)
  • Received : 2010.11.05
  • Accepted : 2011.02.12
  • Published : 2011.03.01

Abstract

Antagonistic rhizobacteria, more specifically fluorescent pseudomonads and certain species of Bacillus, are known as biocontrol agents of fungal root diseases of agronomic crops. In this study, 144 bacteria were isolated from cucumber rhizosphere and screened as potential biological control agents against Phytophthora drechsleri, the causal agent of cucumber root rot, in vitro condition. Non-volatile compounds of 23 isolates showed noticeable inhibition zone (> 30%) against P. drechsleri, whereas volatile compounds of 7 isolates could prevent more than 30% of the mycelial growth of the fungus. All promising isolates, except of Pseudomonas flourescens V69, promoted significantly plant growth under in vitro condition. P. flourescens CV69 and V11 exhibited the highest colonization on the root. Results of the greenhouse studies showed that a reduction in disease incidence by use of some strains, and particularly use of strains CV6 and V11 as a soil treatment, exhibited a reduction in disease incidence so that suppressed disease by 85.71 and 69.39% respectively. Pseudomonas flourescens CV6 significantly suppressed disease in comparison to Ridomil fungicide. The use of mixture bacterial strains in the soil inoculated by the fungus resulting in falling down the most of the plants which didn't show significant difference with infected control soils without bacteria.

Keywords

References

  1. Ahmed-Idris, H., Labuschagne, N. and Korsten, L. 2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Con. 40:97-106. https://doi.org/10.1016/j.biocontrol.2006.07.017
  2. Alavi, A. and Strange, R. N. 1979. A baiting for isolating Phytophthora drechsleri, causal agent of crown rot of Cucumis species in Iran. Plant Dis. Rep. 63:1084-1086.
  3. Alavi, A. and Strange, R. N. 1982. The relative susceptibility of some cucurbits to an Iranian isolate of Phytophthora drechsleri. Plant Pathol. 31:221-227. https://doi.org/10.1111/j.1365-3059.1982.tb01272.x
  4. Alexander, B. J. R. 1999. Studies on Biological Control of Phytophthora cactorum on Apple. Ph.D. Thesis, University of Auckland, New Zealand.
  5. Babadoost, M. and Islam, S. Z. 2003. Fungicide seed Sreatment effects on seedling damping-off of pumpkin caused by Phytophthora capsici. Plant Dis. 87:63-68. https://doi.org/10.1094/PDIS.2003.87.1.63
  6. Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  7. de Bruijn, I., de Kock, M. J. D., Yand, M., de Waard, P., van Beek, T. A. and Raaijmakers, J. M. 2007. Genome-baced discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 63:417-428. https://doi.org/10.1111/j.1365-2958.2006.05525.x
  8. de Jonghe, H. 2006. Control of Phytophthora spp. By means of (bio) surfactants and surfactant-producing Pseudomonas spp. Ph.D. Thesis, Gent University, Belgium.
  9. de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A. and Raaijmakers, J. M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69:7161-7172. https://doi.org/10.1128/AEM.69.12.7161-7172.2003
  10. Duffy, B. K., Simon, A. and Weller, D. M. 1996. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all of wheat. Phytopathology 86:188-194. https://doi.org/10.1094/Phyto-86-188
  11. Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora capsici. in: Phytophthora Diseases Worldwide, ed. by D.C. Erwin and O.K. Ribeiro, pp. 262-268. APS Press, St. Paul, MN, USA.
  12. Fallahzadeh-Mamaghani, V., Ahmadzadeh, M. and Sharifi, R. 2009. Screening systemic resistance-inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. J. Plant Pathol. 91:663-670.
  13. Gould, W. D., Hagedron, C., Bardinelii, T. R. and Zablotowicz, R. 1985. New selective media for enumeration and recovery of fluorescent Pseudomonads from various habitats. Appl. Environ. Microbiol. 49:28-32.
  14. Guetsky, R., Elad, Y., Shtienberg, D. and Dinoor, A. 2001. Combining biocontrol agents to reduce variability of biological control. Phytopathology 91:261-267. https://doi.org/10.1094/PHYTO.2001.91.3.261
  15. Haas, D. and Defago, G. 2005. Biological control of soil-born pathogens by fluorescent Pseudomonads. Nature Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
  16. Hwang, B. K. and Kim, C. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79:221-227. https://doi.org/10.1094/PD-79-0221
  17. Inam-ul-Haq, M., Javed, M., Ahmad, R. and Rehman, A. 2003. Evaluation of different strains of Pseudomonas fluorescense for the biocontrol of Fusarium wilt of chickpea. Pakistan J. Plant Pathol. 2:65-74. https://doi.org/10.3923/ppj.2003.65.74
  18. Islam, S. Z. and Babadoost, M. 2002. Effect of red-light treatment of seedlings of pepper, pumpkin, and tomato on the occurrence of Phytophthora damping-off. Hort. Sci. 37:678-681.
  19. Janisiewicz, W. J. 1996. Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473-479. https://doi.org/10.1094/Phyto-86-473
  20. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. and Defago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of bacterial secondary metabolite, 2,4-diacetylphoroglucinol. Mol. Plant-Microbe Interact. 5:4-13. https://doi.org/10.1094/MPMI-5-004
  21. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 268:885-886.
  22. Kraus, J. and Loper, J. E. 1992. Lack of evidence for a role of antifungal metaoolite production by Pseudomonas fluorescense PF5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264-271. https://doi.org/10.1094/Phyto-82-264
  23. Kreutzer, W. A., Bodine, E. W. and Durrell, L. W. 1940. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology 30:972-976.
  24. Lamour, K. H. and Hausbeck, M. K. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90:396-400. https://doi.org/10.1094/PHYTO.2000.90.4.396
  25. Lamour, K. H. and Hausbeck, M. K. 2001. Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology 91:973-980. https://doi.org/10.1094/PHYTO.2001.91.10.973
  26. Landa, B. B., Hervas, A., Bethiol, W. and Jimenez-Diaz, R. M., 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f.sp. ciceris. Phytoparasitica 25:305-318. https://doi.org/10.1007/BF02981094
  27. Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K. and Lee, G. W. 2007. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J. Microbiol. Biotechnol. 24:1139-1145.
  28. McGrath, M. T. 2001. Vegetable MD online: Phytophthora blight of cucurbits. Cooperative Extension, New York State, Cornell University. Online publication.
  29. Nielsen, C. J., Ferrin, D. M. and Stanghellini, M. E. 2006. Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Can. J. Plant Pathol. 28:450-460. https://doi.org/10.1080/07060660609507319
  30. Osburn, R. M., Milner, J. L., Oplinger, E. S., Smith, R. S. and Handelsman, J. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79: 551-556. https://doi.org/10.1094/PD-79-0551
  31. Raaijmakers, J. M., Vlami, M. and de Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. Antonie van leeuwenhoek. Int. J. Gen. Appl. Microbiol. 81:537-547.
  32. Rangajaran, S., Saleena, L. M., Vasudevan, P. and Nair, S. 2003. Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73-82. https://doi.org/10.1023/A:1022950811520
  33. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. Third edition. APS press, MN. USA.
  34. Sid Ahmed, A., Ezziyyani, M., Pérez-Sanchez, C. and Candela, M. E. 2003. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur. J. Plant Pathol. 109:418-426.
  35. Stanghellini, M. E. and Miller, R. M. 1997. Their identity and potential efficacy in the biological control zoosporic plant pathogens. Plant Dis. 81:4-12. https://doi.org/10.1094/PDIS.1997.81.1.4
  36. Stanghellini, M. E., Kim, D. H., Rasmussen, S. L. and Rorabaugh, P. A. 1996. Control of root rot of peppers caused by Phytophthora capsici with a nonionic surfactant. Plant Dis. 80:1113-1116. https://doi.org/10.1094/PD-80-1113
  37. Stanghellini, M. E., Nielsen, C. J., Kim, D. H., Rasmussen, S. L. Nda Rorabaugh, P. A. 2000. Influence of sub-versus-top-irrigation and surfactants in a recirculating system on disease incidence caused by Phytophthora spp. in potted pepper plants. Plant Dis. 84:1147-1150. https://doi.org/10.1094/PDIS.2000.84.10.1147
  38. Thomshaw, L. S. 1996. Biological control of plant pathogens. Curr. Opin. Biotech. 77:343-347.
  39. Tracey, M. T. W., Kerry, K. and Mark, J. B. 2004. Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops, Plant and Soil 266:57-67.
  40. Weller, D. M. 1988. Biological control of soil borne plant pathogens in the rhizosphere with Bacteria. Annu. Rev. Phytopathol. 20:379-407.
  41. Whipps, J. M. 2001. Microbial interaction and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  42. Williams, G. E. and Asher, M. J. C. 1996. Selection of rhizobacteria for the control of Pythium ultimum and Aphanomyces cochlioides on sugarbeet seedlings. Crop Prot. 15:479-486. https://doi.org/10.1016/0261-2194(96)00014-2

Cited by

  1. Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review vol.96, pp.1, 2012, https://doi.org/10.1007/s00253-012-4282-y
  2. Potential ofPseudomonasandBacillusIsolates as Biocontrol Agents Against Fusarium Wilt of Eggplant vol.27, pp.4, 2013, https://doi.org/10.5504/BBEQ.2013.0047
  3. Ocimum basilicumL. essential oil cultivated in Iran: chemical composition and antifungal activity against threePhytophthoraspecies vol.47, pp.14, 2014, https://doi.org/10.1080/03235408.2013.855022
  4. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression vol.6, 2016, https://doi.org/10.3389/fmicb.2015.01360
  5. Potential of Novel Sequence Type of Burkholderia cenocepacia for Biological Control of Root Rot of Maize (Zea mays L.) Caused by Fusarium temperatum vol.20, pp.5, 2019, https://doi.org/10.3390/ijms20051005