• Title/Summary/Keyword: rhizosphere environment

Search Result 102, Processing Time 0.029 seconds

Physiological Characterization of BTEX Degrading Bacteria Microbacterium sp. EMB-1 and Rhodococ-cus sp. EMB-2 Isolated from Reed Rhizosphere of Sunchon Bay (순천만 갈대의 근권으로부터 분리한 BTEX 분해세균 Microbacterium sp. EMB-1과 Rhodococcus sp. EMB-2의 생리학적 특성 분석)

  • Kang Sung-Mi;Oh Kye-Heon;Kahng Hyung-Yeel
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study focuses on investigating roles of microorganisms in decontamination of reed rhizosphere in Sunchon Bay, Korea, which is considered one of the marsh and mud environment severely affected by human activities such as agriculture and fisheries. In general, the bay is known to play the role of the buffering zone to reduce the sudden impact or change by environmental stresses. In our initial efforts to elucidate the microbial functions in decontamination process in reed rhizosphere, pure bacteria capable of degrading aromatic hydrocarbons were isolated from reed (Phragmites communis) rhizosphere of Sunchon bay by enrichment culture using either benzene, toluene, ethylbenzene, or xylene (BTEX) as a sole source of carbon and energy. Measurement of the rates of BTEX degradation and cell growth during the incubation in BTEX media under several temperature conditions demonstrated maximized degradation of BTEX at $37^{\circ}C$ in both strains. Both strains were also resistant to all the heavy metals and antibiotics tested in this study, as well as they grew well at $42^{\circ}C$. Identification of the isolates based on 16S rRNA gene sequences, and a variety of phenotypic and morphologic properties revealed that the two strains capable of BTEX catabolism were among Microbacterium sp., and Rhodococcus sp. with over $95{\%}$ confidence, designated Microbacterium sp. EMB-1 and Rhodococcus sp. EMB-2, respectively This result suggested that in the rhizosphere of reed, one of major salt marsh plants they might play an important roles in decontamination process of reed rhizosphere contaminated with petroleum such as BTEX.

Two-year field monitoring shows little evidence that transgenic potato containing ABF3 significantly alters its rhizosphere microbial community structure

  • Nam, Ki Jung;Kim, Hyo-Jeong;Nam, Kyong-Hee;Pack, In Soon;Kim, Soo Young;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Background: Plants over-expressing Arabidopsis ABF3 (abscisic acid-responsive element-binding factor 3) have enhanced tolerance to various environmental stresses, especially drought. Using terminal restriction fragment length polymorphism (T-RFLP) analysis, we compared the rhizosphere-associated structures of microbial communities for transgenic potato containing this gene and conventional "Jopoong" plants. Results: During a 2-year field experiment, fungal richness, evenness, and diversity varied by year, increasing in 2010 when a moderate water deficit occurred. By contrast, the bacterial richness decreased in 2010 while evenness and diversity were similar in both years. No significant difference was observed in any indices for either sampling time or plant line. Although the composition of the microbial communities (defined as T-RF profiles) changed according to year and sampling time, differences were not significant between the transgenic and control plants. Conclusions: The results in this study suggest that the insertion of ABF3 into potato has no detectable (by current T-RFLP technique) effects on rhizosphere communities, and that any possible influences, if any, can be masked by seasonal or yearly variations.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China

  • Zhang, Yanxu;Bi, Yinli;Shen, Huihui;Zhang, Longjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.848-855
    • /
    • 2020
  • Land subsidence induced by underground coal mining leads to severe ecological and environmental problems. Arbuscular mycorrhizal fungi (AMF) have the potential to improve plant growth and soil properties. We aimed to assess the effects of AMF on the growth and soil properties of sea buckthorn under field conditions at different reclamation times. Inoculation with AMF significantly promoted the survival rate of sea buckthorn over a 50-month period, while also increasing plant height after 14, 26, and 50 months. Crown width after 14 months and ground diameter after 50 months of inoculation treatment were significantly higher than in the uninoculated treatment. AMF inoculation significantly improved plant mycorrhizal colonization rate and promoted an increase in mycelial density in the rhizosphere soil. The pH and electrical conductivity of rhizosphere soil also increased after inoculation. Moreover, after 26 and 50 months the soil organic matter in the inoculation treatment was significantly higher than in the control. The number of inoculated soil rhizosphere microorganisms, as well as acid phosphatase activity, also increased. AMF inoculation may play an active role in promoting plant growth and improving soil quality in the long term and is conducive to the rapid ecological restoration of damaged mining areas.

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Sang-Hyun;Jung, Soon-Je;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

Effect of Rootzone Warming by Hot Water in Winter Season on Rhizosphere Environment in Greenhouse-grown Cucumber(Cucumis sativus L.) (온수순환에 의한 시설오이 근권부 지온 상승)

  • 이재욱;이응호;권지선;권영삼;이우승
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1995.04a
    • /
    • pp.51-52
    • /
    • 1995
  • 혹한기 시설오이 재배시 저지온으로 인해 모의 활착지연, 양수분흡수 불량에 따른 생육부진으로 출하시기가 늦어질 뿐 아니라, 품질 및 초기 수량이 저하되고 있다. 일부농가에서 양열과 전열선을 이용하여 지온을 상승시키고 있으나, 이들 방법은 적정 지온유지 및 실용성에 있어서 여러가지 문제점이 따른다. 따라서 본시험에서는 온수지중가온방법을 도입하여 지온상승을 도모하였다. (중략)

  • PDF

Bacterial Microbiome Differences between the Roots of Diseased and Healthy Chinese Hickory (Carya cathayensis) Trees

  • Xiao-Hui Bai;Qi Yao;Genshan Li;Guan-Xiu Guan;Yan Fan;Xiufeng Cao;Hong-Guang Ma;Mei-Man Zhang;Lishan Fang;Aijuan Hong;Dacai Zhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1299-1308
    • /
    • 2023
  • Carya cathayensis is an important economic nut tree that is endemic to eastern China. As such, outbreaks of root rot disease in C. cathayensis result in reduced yields and serious economic losses. Moreover, while soil bacterial communities play a crucial role in plant health and are associated with plant disease outbreaks, their diversity and composition in C. cathayensis are not clearly understood. In this study, Proteobacteria, Acidobacteria, and Actinobacteria were found to be the most dominant bacterial communities (accounting for approximately 80.32% of the total) in the root tissue, rhizosphere soil, and bulk soil of healthy C. cathayensis specimens. Further analysis revealed the abundance of genera belonging to Proteobacteria, namely, Acidibacter, Bradyrhizobium, Paraburkholderia, Sphaerotilus, and Steroidobacter, was higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. In addition, the abundance of four genera belonging to Actinobacteria, namely, Actinoallomurus, Actinomadura, Actinocrinis, and Gaiella, was significantly higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. Altogether, these results suggest that disruption in the balance of these bacterial communities may be associated with the development of root rot in C. cathayensis, and further, our study provides theoretical guidance for the isolation and control of pathogens and diseases related to this important tree species.

Enhanced Phytoremediation of Trichloroethylene - Contaminated Soil by Poplar-Colonizing Recombinants

  • 심호재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.182-195
    • /
    • 2000
  • Indigenous bacteria from poplar roots (Populus mnadensis var. eugenei, 'Imperial Carolina') and Southern Californian shrub rhizospheres as well as two tree-colonizing Rhizobium strains (ATCC 10320 and 35645) were genetically engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the torn locus into the chromosome. The poplar and Rhizobium recombinants degraded trichloroethylene (TCE) at 0.8-2.1 nmol/min.mg protein (initial TCE concentration, 10u M) and competitive against the unengineered hosts in wheat and barley rhizospheres for one month (colonization at 1-23 $\times$ 10$^{5}$ CFU/cm root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as high as 79 $\pm$ 12% of all rhizosphere bacteria after 28 days (0.2-31 $\times$ 10$^{5}$ CFU/cm root). Furthermore, five of the most-competitive poplar recombinants (e.g., Pb3-1 and Pb5-1 which were identified as Pseudomonas PsK) retained the ability to express TOM for 29 days as 100 $\pm$ 0% of the recombinants detected in the poplar rhizosphere had constitutive expression of TOM.

  • PDF