DOI QR코드

DOI QR Code

Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China

  • Zhang, Yanxu (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing)) ;
  • Bi, Yinli (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing)) ;
  • Shen, Huihui (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing)) ;
  • Zhang, Longjie (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing))
  • Received : 2019.07.04
  • Accepted : 2020.03.09
  • Published : 2020.06.28

Abstract

Land subsidence induced by underground coal mining leads to severe ecological and environmental problems. Arbuscular mycorrhizal fungi (AMF) have the potential to improve plant growth and soil properties. We aimed to assess the effects of AMF on the growth and soil properties of sea buckthorn under field conditions at different reclamation times. Inoculation with AMF significantly promoted the survival rate of sea buckthorn over a 50-month period, while also increasing plant height after 14, 26, and 50 months. Crown width after 14 months and ground diameter after 50 months of inoculation treatment were significantly higher than in the uninoculated treatment. AMF inoculation significantly improved plant mycorrhizal colonization rate and promoted an increase in mycelial density in the rhizosphere soil. The pH and electrical conductivity of rhizosphere soil also increased after inoculation. Moreover, after 26 and 50 months the soil organic matter in the inoculation treatment was significantly higher than in the control. The number of inoculated soil rhizosphere microorganisms, as well as acid phosphatase activity, also increased. AMF inoculation may play an active role in promoting plant growth and improving soil quality in the long term and is conducive to the rapid ecological restoration of damaged mining areas.

Keywords

References

  1. Bian ZF, Inyang HI, Daniels JL, Otto F, Struthers S. 2010. Environmental issues from coal mining and their solutions. Min. Sci. Technol. (Xuzhou, China). 20: 215-223. https://doi.org/10.1016/S1674-5264(09)60187-3
  2. Chugh YP. 2018. Concurrent mining and reclamation for underground coal mining subsidence impacts in China. Int. J. Coal Sci. Technol. 5: 18-35. https://doi.org/10.1007/s40789-018-0189-2
  3. Hu H, Lian X. 2015. Subsidence rules of underground coal mines for different soil layer thickness: Lu'an Coal Base as an example, China. Int. J. Coal Sci. Technol. 2: 178-185. https://doi.org/10.1007/s40789-015-0088-8
  4. Huang Y, Tian F, Wang YJ, Wang M, Hu ZL. 2015. Effect of coal mining on vegetation disturbance and associated carbon loss. Environ. Earth Sci. 73: 2329-2342. https://doi.org/10.1007/s12665-014-3584-z
  5. Yang DJ, Bian ZF, Lei SG. 2016. Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China. Environ. Earth Sci. 75: 652. https://doi.org/10.1007/s12665-016-5439-2
  6. Shi PL, Zhang YX, Hu ZQ, Ma K, Wang H, Chai TY. 2017. The response of soil bacterial communities to mining subsidence in the west China aeolian sand area. Appl. Soil Ecol. 121: 1-10. https://doi.org/10.1016/j.apsoil.2017.09.020
  7. Lei SG, Bian ZF, Daniels JL, He X. 2010. Spatio-temporal variation of vegetation in an arid and vulnerable coal mining region. Min. Sci. Technol. (Xuzhou, China) 20: 485-490. https://doi.org/10.1016/S1674-5264(09)60230-1
  8. Asmelash F, Bekele T, Birhane E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol. 7: 1095.
  9. Zhao RX, Guo W, Bi N, Guo JY, Wang LX, Zhao J, et al. 2015. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol. 88: 41-49. https://doi.org/10.1016/j.apsoil.2014.11.016
  10. Choi J, Summers W, Paszkowski U. 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopath. 56: 135-160. https://doi.org/10.1146/annurev-phyto-080516-035521
  11. Paradis R, Dalpe Y, Charest, C. 1995. The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol. 129: 637-642. https://doi.org/10.1111/j.1469-8137.1995.tb03032.x
  12. Rodriguez-Caballero G, Caravaca F, Fernandez-Gonzalez AJ, Alguacila MM, Fernandez-Lopez M, Roldana A. 2017. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci. Total Environ. 584: 838-848. https://doi.org/10.1016/j.scitotenv.2017.01.128
  13. Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, et al. 2018. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 247: 573-585. https://doi.org/10.1007/s00425-017-2808-3
  14. Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12: 563-569. https://doi.org/10.1111/j.1438-8677.2009.00308.x
  15. Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, et al. 2017. Arbuscular mycorrhizal fungi and plant growthpromoting pseudomonads improve yield quality and nutritional value of tomato: a field study. Mycorrhiza 27: 1-11. https://doi.org/10.1007/s00572-016-0727-y
  16. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fert. Soils 37: 1-16. https://doi.org/10.1007/s00374-002-0546-5
  17. Mardhiah U, Caruso T, Gurnell A, Rillig MC. 2016. Arbuscular my corrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Appl. Soil Ecol. 99: 137-140. https://doi.org/10.1016/j.apsoil.2015.11.027
  18. Manaut N, Sanguin H, Ouahmane L, Bressan M, Thioulouse J, Baudoin E, et al. 2015. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecol. Eng. 79: 113-119. https://doi.org/10.1016/j.ecoleng.2015.03.007
  19. Karthikeyan A, Krishnakumar N. 2012. Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi. Ann. For. Res. 55: 207-216.
  20. Li SP, Bi YL, Kong WP, Wang J, Yu HY. 2015. Effects of the arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Russ. J. Ecol. 46: 431-437. https://doi.org/10.1134/S1067413615050173
  21. Bi YL, Zhang J, Song ZH, Wang ZG, Qiu L, Hu JJ, et al. 2019.Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures. Sci. Total Environ. 652: 398-405. https://doi.org/10.1016/j.scitotenv.2018.10.249
  22. Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161 https://doi.org/10.1016/S0007-1536(70)80110-3
  23. Giovannetti M, Mosse B. 1980. An evaluation of technique for measuring vesicular-arbuscular mycorrhizae infection in roots. New Phytol. 84: 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  24. Jakobsen I, Abbott LK, Robson AD. 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120: 371-380. https://doi.org/10.1111/j.1469-8137.1992.tb01077.x
  25. Gryndler M, Larsen J, Hrselova H, Rezacova V, Gryndlerova H, Kubat J. 2006. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16: 159-166. https://doi.org/10.1007/s00572-005-0027-4
  26. Zhao LP, Jiang Y.1986. Determination of the method of soil phosphatase activity. Chin. J. Soil Sci. 17: 138-142.
  27. Bao SD. 2000. Soil agricultural chemistry analysis, pp. 117-128. 2nd Ed. Agriculture Press, Beijing.
  28. Shen P, Fan XR, Li GB. 1999. Microbiology experiment, pp. 123-128. Higher Education Press, Beijing.
  29. Verbruggen E, Jansa J, Hammer E C, Rillig MC. 2016. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil?. J. Ecol. 104: 261-269. https://doi.org/10.1111/1365-2745.12496
  30. Ye SP, Yang YJ, Xin GR, Wang YT, Ruan L, Ye GR. 2015. Studies of the Italian ryegrass-rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere. Appl. Soil Ecol. 90: 26-34. https://doi.org/10.1016/j.apsoil.2015.01.017
  31. Tang M, Xue S, Ren JH, Hu JJ, Liu JC. 2003. Mechanism of the promotion of drought resistance of Hippophae rhamnoides with arbuscular mycorrhizal fungi. J. Northeast. For. Univ. 18: 29-31.
  32. Tian CJ, He XY, Zhong Y, Chen JK. 2002. Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For. Ecol. Manage. 170: 307-312. https://doi.org/10.1016/S0378-1127(01)00781-2
  33. Jaroszewska A, Biel W, Telesinski A. 2018. Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. J. Elem. 23: 673-684.
  34. Estaun V, Save R, Biel C. 1997. AM inoculation as a biological tool to improve plant revegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Appl. Soil Ecol. 6: 223-229. https://doi.org/10.1016/S0929-1393(97)00014-0
  35. Trejo D, Barois I, Sangabriel-Conde W. 2015. Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agrofor. Syst. 90: 265-279.
  36. Jasper DA, Abbott LK, Robson AD.1989. Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol. 112: 93-99. https://doi.org/10.1111/j.1469-8137.1989.tb00313.x
  37. He XL, Chen C, He B. 2011. Spatial distribution of arbuscular mycorrhizal fungi and glomalin of Hippophae rhamnoides L. in farming-pastoral zone from the two northern provinces of China. Acta Ecologica Sinica 31: 1653-1661.
  38. Caravaca F, Alguacil M M, Barea J M, Roldana A. 2005. Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biol. Biochem. 37: 227-233. https://doi.org/10.1016/j.soilbio.2004.06.019
  39. Ozores-Hampton M, Stansly P A, Salame T P. 2011. Soil chemical, physical, and biological properties of a sandy soil subjected to long-term organic amendments. J. Sustain. Agr. 35: 243-259. https://doi.org/10.1080/10440046.2011.554289
  40. Zhao Z, Shahrour I, Bai Z, Fan W, Feng L, Li H. 2013. Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China. Eur. J. Soil Biol. 55: 40-46. https://doi.org/10.1016/j.ejsobi.2012.08.006
  41. Huang YZ, Zhong M, Wu W, Sui LH, Zhang C, Hao XW. 2014. Effects of Arbuscular mycorrhizal fungi isolated from white clovers (Trifolium repens L.) on soil bacteria and fungi. Chem. Ecol. 30: 118-132. https://doi.org/10.1080/02757540.2013.841892
  42. Li Y, Chen Y, Li M, Lin X, Liu R. 2012. Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere. 22: 79-87. https://doi.org/10.1016/S1002-0160(11)60193-8
  43. Bi Y, Wang K, Wang J. 2018. Effect of different inoculation treatments on AM fungal communities and the sustainability of soil remediation in Daliuta coal mining subsidence area in northwest China. Appl. Soil Ecol. 132: 107-113. https://doi.org/10.1016/j.apsoil.2018.08.009
  44. Zhang HQ, Tang M, Chen H, Tian ZQ, Xue YQ, Feng Y. 2010. Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant Soil. 326: 415-424. https://doi.org/10.1007/s11104-009-0022-1
  45. Feng Y, Tang M, Chen H, Zhang H, Cong W, Zhang H. 2011. Community diversity of bacteria and arbuscular mycorrhizal fungi in the rhizosphere of Amorpha fruticosa L., Hippophae rhamnoides L. and Robinia pseudoacacia L. in different ecological regions of Loess Plateau in Shaanxi Province of China. Afr. J. Microbiol. Res. 5: 4787-4795.
  46. Torrez V, Ceulemans T, Mergeay J, de Meester L, Honnay O. 2016. Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal. Appl. Veg. Sci. 19: 7-19. https://doi.org/10.1111/avsc.12193
  47. Giri B, Kapoor R, Mukerji KG. 2005. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New For. 29: 63-73. https://doi.org/10.1007/s11056-004-4689-0
  48. Wulandari D, Cheng W, Tawaraya K. 2016. Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. For. Ecol. Manage. 376: 67-73. https://doi.org/10.1016/j.foreco.2016.06.008
  49. Davidson BE, Novak SJ, Serpe MD. 2016. Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting. Mycorrhiza 26: 595-608. https://doi.org/10.1007/s00572-016-0696-1
  50. Kohler J, Caravaca F, Azcon R, Diaze G, Roldanc A. 2015. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci. Total Environ. 514: 42-48. https://doi.org/10.1016/j.scitotenv.2015.01.085
  51. Ortiz N, Armada E, Duque E, Roldan A, Azcon R. 2015. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J. Plant Physiol. 174: 87-96. https://doi.org/10.1016/j.jplph.2014.08.019
  52. Berruti A, Lumini E, Balestrini R, Bianciotto V. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Front. Microbiol. 6: 1559. https://doi.org/10.3389/fmicb.2015.01559
  53. Back MM, Altmann T, Souza PVD. 2016. Influence of arbuscular mycorrhizal fungi on the vegetative development of citrus rootstocks1. Pesqui. Agropecu. Trop. 46: 407-412. https://doi.org/10.1590/1983-40632016v4642180

Cited by

  1. Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas vol.18, pp.13, 2020, https://doi.org/10.3390/ijerph18136797