• Title/Summary/Keyword: rhizobium

Search Result 201, Processing Time 0.042 seconds

Effect of Vermicompost in Combination with Bacterial and Mineral Fertilizers on the Yield of Vegetable Soybean

  • Bajracharya, S.K.;Shercahn, D.P.;Bhattarai, S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.100-103
    • /
    • 2007
  • A field experiment was conducted in Agronomy farm at an altitude of 1350 m. above sea level in a randomized complete block design with three replications and eight treatments on vegetable type soybean in 2005. The objective was to see the effect of vermicompost alone and in combination with Rhizobium inoculum and mineral fertilizers on the yield of vegetable soybean. The result showed higher number of nodules from the non inoculated plot, however, the nodules weight was highest from the inoculated plots. No significant difference was notice statistically on roots and shoots dry weight. Soybean grain was obtained highest (32.3%) over the non inoculated plot followed by vermicompost plus inoculated, however, there was non significant difference. There was a slight increment on grain and straw yield from the inoculated plots over the non inoculated.

Malonate Metabolism: Biochemistry, Molecular Biology, Physiology, and Industrial Application

  • Kim, Yu-Sam
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.443-451
    • /
    • 2002
  • Malonate is a three-carbon dicarboxylic acid. It is well known as a competitive inhibitor of succinate dehydrogenase. It occurs naturally in biological systems, such as legumes and developing rat brains, which indicates that it may play an important role in symbiotic nitrogen metabolism and brain development. Recently, enzymes that are related to malonate metabolism were discovered and characterized. The genes that encode the enzymes were isolated, and the regulation of their expression was also studied. The mutant bacteria, in which the malonate-metabolizing gene was deleted, lost its primary function, symbiosis, between Rhizobium leguminosarium bv trifolii and clover. This suggests that malonate metabolism is essential in symbiotic nitrogen metabolism, at least in clover nodules. In addition to these, the genes matB and matC have been successfully used for generation of the industrial strain of Streptomyces for the production of antibiotics.

Solubility Enhancement of Flavonoids by Cyclosophoraose Isolated from Rhizobium meliloti 2011

  • Kang Si-Mook;Lee Sang-Hoo;Kwon Chan-Ho;Jung Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.791-794
    • /
    • 2006
  • Cyclosophoraose (cyclic $\beta-(1,2)-glucan$, Cys) isolated from Rhizobium meliloti, a soil microorganism, was used as a solubility enhancer for flavonoids. The complexes of the cyclic oligosaccharide with flavonoids were confirmed through $^1H$ nuclear magnetic resonance (NMR) spectroscopic analysis. Flavonoids solubilized by Cys were quantitatively analyzed through high-performance liquid chromatography (HPLC). Among the flavonoids tested, the solubility of naringenin was greatly enhanced by Cys, compared with other compounds. The solubility of naringenin was enhanced about 7.1-fold by adding 10 mM Cys, compared with a control. $^1H$ NMR spectroscopic analysis indicated that the H-6 and H-8 protons, which are located on the A ring of naringenin, were greatly shifted upfield upon the complexation with Cys. This result suggested that Cys showed a regioselective interaction with the naringenin molecule upon the complexation, resulting in the solubility enhancement of naringenin.

Isolation and Characterization of Rhizobia from Soybean Cultivated in Korea (대두(大豆) 근류균(根瘤菌)의 분리(分離) 및 특성(特性))

  • Yun, Han-Dae;Cho, Moo-Je;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 1987
  • Soybean rhizobia were isolated from 101 soybean (Glycine max.) cultivar which had been grown for the breeding experiment in Korea. Seven strains of the fast-growing soybean rhizobia and nine strains of the slow-growing soybean rhizobia were selected on the basis of their growth rate in AMA medium and their high ability of nodulation. The slow-growing soybean rhizobia were identified as Bradyrhizobium japonicum in the acetylene-reducing activity, microbial characteristics, and biochemical characteristics whereas the fast-growing soybean rhizobia were very similar to Rhizobium fredii.

  • PDF

Properties of Malonyl-CoA Decarboxylase from Rhizobium trifolii

  • An, Jae-Hyung;Lee, Gha-Young;Song, Jong-Hee;Lee, Dai-Woon;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.414-418
    • /
    • 1999
  • A novel gene for malonyl-CoA decarboxylase was discovered in the mat operon, which encodes a set of genes involved in the malonate metabolism of Rhizobium trifolii (An and Kim, 1998). The subunit mass determined by SDS-PAGE was 53 kDa, which correspond to the deduced mass from the sequence data. The molecular mass of the native enzyme determined by field flow fractionation was 208 kDa, indicating that R. trifolii malonyl-CoA decarboxylase is homotetrameric. R. trifolii malonyl-CoA decarboxylase converted malonyl-CoA to acetyl-CoA with a specific activity of 100 unit/mg protein. Methylmalonyl-CoA was decarboxylated with a specific activity of 0.1 unit/mg protein. p-Chloromercuribenzoate inhibited this enzyme activity, suggesting that thiol group(s) is(are) essential for this enzyme catalysis. Database analysis showed that malonyl-CoA decarboxylase from R. trifolii shared 32.7% and 28.1% identity in amino acid sequence with those from goose and human, respectively, and it would be located in the cytoplasm. However, there is no sequence homology between this enzyme and that from Saccharopolyspora erythreus, suggesting that malonyl-CoA decarboxylases from human, goose, and R. trifolii are in the same class, whereas that from S. erythreus is in a different class or even a different enzyme, methylmalonyl-CoA decarboxylase. According to the homology analysis, Cys-214 among three cysteine residues in the enzyme was found in the homologous region, suggesting that the cysteine was located at or near the active site and plays a critical role in catalysis.

  • PDF

Studies on Symbiotic Nitrogen Fixation in Soybeans -III. Effects of Soil Improvement on N2 Fixation and Yield of Soybean Inoculated with Rhizobium japonicum in Newly Reclaimed Upland Soil (대두근류균(大豆根瘤菌)의 질소고정(窒素固定)에 관한 연구 -III. 신개간지(新開墾地) 토양에서 근류균(根瘤菌)의 접종(接種) 및 개량제시용이 질소고정(窒素固定)과 대두수량에 미치는 효과)

  • Ryu, Jin-Chang;Lee, Sang-Kyu;Lee, Hyuk-Ho;Hong, Chong-Woon;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.188-194
    • /
    • 1983
  • A Pot experiment was conducted to find out the effects of NPK fertilizers and soil amendments on the symbiotic nitrogen fixation and yield of soybean inoculated with Rhizobium japonicum in newly reclaimed upland soil with very low fertility. The results are summarized as follows; 1. Application of PK fertilizer and soil amendments such as lime, and rice straw in combination with micronutrients (Zn, B, Mo) increased the amounts of symbiotic $N_2$ fixation in soybean. 2. The inoculation of Rhizobium japonicum with application of soil amendments increased the yield of soybean by 4% to 10% due to enhanced $N_2$ fixation. 3. In case of improvement of newly reclaimed hilly soil in order to obtain the high yield of soybean, simutaneous application of soil amendments with inoculation of R. janconican should the highest yield.

  • PDF

Biochemical Characterization of Fast-and Slow-Growing Rhizobium japonicum (Fast-growing과 Slow-growing Rhizobium japonicum의 생화학적 특성)

  • Kim, Chang Jin;Kim, Sung Hoon;Mheen, Tae Ick
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 1985
  • Rhizobium japonicum isolates from all around Korea could be classified into two groups, i.e., acid producing fast-growers with 2.4 hour mean generation time and non-acid producing slow-growers in yeast extract-mannitol medium with 13.1 hour mean generation time. Tested fast-growers were higher in 6-phosphogluconate dehydrogenase activity than slow-growers were and used sucrose as carbon source whereas slow-growers did not. Fast-grower R4, R257, R278, showed tolerance even in 0.5M NaCl or above and the growth of all the strains tested were inhibited at below pH 4.5. Relative symbiotic activities of nitrogen fixation for these isolated with Glycine max cv. Jangyeobkong (commercial soybean cultivar mostly cultivated in Korea) ranged 0.1 to 2.0 comparing to that of R. japonicum L-259 (NRRL), without regard to their growth rate.

  • PDF