• Title/Summary/Keyword: rheologies

Search Result 3, Processing Time 0.017 seconds

Comparison of the rheologies of laterite and goethite suspensions

  • James, David F.;Blakey, Brian C.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.109-115
    • /
    • 2004
  • Comparisons in shear behaviour are made between aqueous suspensions of a laterite ore and aqueous suspensions of pure goethite ($\alpha$-FeOOH), following prior papers in which the rheologies of the two mineral suspensions were characterized individually. Drawing comparisons is appropriate because the ore sample was about 65% goethite and it was originally thought that the pure goethite might serve as a model of the more complex laterite. Viscosity measurements of the two suspensions show that, at the same solids fraction, the goethite suspensions were more viscous by an order of magnitude, even though the goethite particles had much smaller aspect ratios. Similarly, yield stresses for the goethite suspensions were at least an order of magnitude higher. The most significant difference was in transient behaviour. Time-dependent effects were investigated by subjecting a fluid to a step change or a ramp sequence in shear rate, and measuring the resulting shear stress over time. In most cases, transient behaviour could not be detected in the goethite suspensions, whereas stresses in the laterite suspensions relaxed over periods of order 10 seconds. The disparate results indicate that a goethite suspension is a poor model of a laterite slurry.

Thermoelastic Aspects of the San Andreas Faults under Very Low Strength (낮은 강도를 갖는 산 안드레아 단층의 열탄성 특성)

  • Park, Moo-Choon;Han, Uk
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • In this study, the data used for the models were a set of 56 geologic estimates of long-term fault slip rates. The hest models were those in which mantle drag was convergent on the Transverse Ranges in the San Andreas fault system, and faults had a low friction (${\mu}$= 0.3). It is clearly important to decide whether these cases of low strength are local anomalies or whether they are representative. Furthermore, it would be helpful to determine fault strength in as many tectonic settings as possible. Analysis of data was considered by unsuspected sources of pore pressure, or even to question the relevance of the friction law. To contribute to the solution of this problem, three attempts were tried to apply finite element method that would permit computational experiments with different hypothesized fault rheologies. The computed model has an assumed rheology and plate tectonic boundary conditions, and produces predictions of present surface velocity, strain rate, and stress. The results of model will be acceptably close to reality in its predictions of mean fault slip rates, stress directions and geodetic data. This study suggests some implications of the thermoelastic characteristics to interpret the relationship with very low strength of San Andreas fault system.

  • PDF

Rheological Properties of Gelatinized Millet Starch Dispersions (국내산 조전분 호화액의 유동특성)

  • Kim, Nam-Soo;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.742-748
    • /
    • 1989
  • Rheological properties of gelatinized millet starch dispersions were evaluated. Gelatinized nonwaxy and waxy millet starch dispersion were typical pseudoplastic fluids. At constant shear rate, gelatinized waxy millet starch dispersion showed higher shear stress than nonwaxy millet starch dispersion. Flow behaviours of gelatinized nonwaxy and waxy millet starch dispersion were well fitted to Herschel-Bulkley equation and flow behaviour index (n) and consistency index (K) were strongly concentration dependent. There was a linear relationship between concentration of gelatinized starch dispersion and square root of yield stress. The concentrations of gelatinized nonwaxy and waxy millet starch dispersion where yield stresses become zero were estimated as 2.19 and 1.69%, respectively. Pseudoplastic constant (m) approaches to a constant value in each type of millet starch when the concentration of gelatinized starch dispersion was increased. As the measuring temperatures increase, n value was increased, whereas, K value was decreased. The activation energies of gelatinized nonwaxy and waxy millet starch dispersion were 2.89 and 3.18kcal/mol, respectively.

  • PDF