• Title/Summary/Keyword: rheological analysis

Search Result 346, Processing Time 0.028 seconds

Strength Characteristics of 3D Printed Composite Materials According to Lamination Patterns (적층 패턴에 따른 3D 프린팅 복합재료의 강도특성)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.193-198
    • /
    • 2021
  • In this study, the rheological characteristics and of 3D printing composite materials and the compressive strength characteristics according to the lamination patterns were evaluated. As a result of rheology test, rapid material change was observed after 60 minutes of extrusion, yielding stress 1.4 times higher than immediately after mixing, and plastic viscosity was 14.94-25.62% lower. The compressive strength of the specimens manufactured in the mold and the laminated specimens were compared, and the lamination pattern of the laminated specimens were 0°, 45°, and 90° as variables. The compressive strength of the mold casting specimen and the laminated specimen from 1 to 28 days of age showed similar performance regardless of the lamination pattern. In particular, at the age of 28 days, the modulus of elasticity, maximum compressive strength, and strain at maximum stress of all specimens were almost the same. In order to analyze the interface of the laminated specimens, X-ray CT analysis of the specimen whose compressive strength were measured was performed. Through CT analysis, it was confirmed that cracks did not occur at the lamination interface, which can be judged that the interface in the laminated specimen behaved in an integrated manner.

Effects of HPMC, MC, and Sodium Alginate on Rheological Properties of Flour Dough (HPMC, MC, sodium alginate 등의 증점제가 밀가루 반죽의 레올로지 특성에 미치는 영향)

  • Kim, Mi-Young;Yun, Mi-Sug;Lee, Jeong-Hoon;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.474-478
    • /
    • 2008
  • This study was carried out to evaluate the rheology of flour doughs containing 0.5% of hydroxypropylmethyl-cellulose (HPMC), methylcellulose (MC), and sodium alginate (SA), respectively. Farinograms, alveograms, a rapid visco analyzer (RVA), and rheofermentometer were employed in the analysis. According to the farinogram tests, the hydrocolloid additions caused changes in water absorption, dough development time, stability, and breakdown. The dough containing HPMC had the highest water absorption at $67.4{\pm}0.12%$. The HPMC dough also had the longest development time ($8.2{\pm}1.04$ min), stability ($12.7{\pm}0.42$ min), and breakdown ($7.9{\pm}1.3$ min). From the alveogram tests, P, G, and PIL values increased, whereas the L value decreased. The W values of the HPMC and SA doughs were increased, but that of the MC dough was decreased. According to the RVA results, the HPMC and SA doughs had reduced initial pasting temperatures whereas that of the MC dough was increased, but the difference was not significant. The peak viscosity of the MC dough also increased. Furthermore, all the doughs had increased breakdown times and decreases in final viscosity and setback. In the rheofermentometer tests, the HPMC dough presented the highest $H_m$, and the SA dough had the largest total volume.

Internal Components Arrangement of MR Damper Landing Gear for Cavitation Prevention (캐비테이션 방지를 위한 MR 댐퍼형 착륙장치의 내부 형상 배치에 대한 연구)

  • Joe, Bang-Hyun;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.33-41
    • /
    • 2020
  • The landing gear of an aircraft is a device that absorbs and dissipates shock energy transmitted from the ground to the fuselage. Among the landing gears, the semi-active MR damper landing gear is supposed to show high-shock absorption efficiency under various landing conditions and secure the stability when out of control. In the case of the MR damper landing gear using an annular channel rather than orifice, Amesim, a commercial multi-physics program, is considered as more useful than the conventional two-degree-of-freedom model because the damping force generated by the pressure drop through the flow annular path can cause cavitation in the low-pressure chamber of the MR damper with a specific internal structure. In this paper, the main dynamic characteristics of the MR damper landing gear with an annular type flow path structure has been analyzed under the condition of cavitation. Based on the analysis results using Amesim, a design guideline for the MR damper flow path that prevents cavitation has been proposed based on the modification of the arrangement of internal components of the damper. The guideline was verified through a drop simulation.

Feasibility Analysis of Wasted Limestone Powder as a Viscosity Reducing Material for Cement Based Materials (시멘트 계열 재료의 점도 저하용 혼화재료로서 폐석회석 미분말의 사용 가능성 분석)

  • Lee, Hyang-Seon;Jeon, Jong-Un;Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • The aim of the research is providing a fundamental idea of reducing viscosity of cement based materials by replacing powder based material. With developing concrete technology, high performance concrete with high solid volume fraction has been used widely. Under the conditions of the high solid volume fraction due to the low w/c and replacement of SCMs, decreased fluidity is one of the critical problem, and thus plasticizer has been used to improve fluidity of the mixture. However, in rheological aspect, the fluidity of cement based materials can be defined with yield stress and viscosity, and using plasticizer only decreases yield stress without least controlling on viscosity. Therefore, based on the idea of Krieger-Dougherty model, a feasibility of wasted limestone powder from cement manufacturing process was used to decrease the viscosity of the mixture by replacing cement powder. According to a series of experiment, by replacing wasted limestone powder solely, there was a possibility of reducing viscosity was observed. Thus, in this research scope, it is considered to contribute on providing a fundamental idea of reducing viscosity with powder replacement and it is expected to contribute on further research using various conditions of replacing powders for reducing viscosity of cementitious materials.

Physicochemical Properties of a Low Calorie Sweetener, Tagatose (저열량 감미료 Tagatose의 이화학적 특성)

  • Roh, Hoe-Jin;Kim, Sang-Yong;Kim, Suk-Shin;Oh, Deok-Kun;Han, Kee-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • The physicochemical properties of tagatose, a low calorie sweetener, was investigated. Rheological property of tagatose solution was found to be Bingham fluid. As the concentration of tagatose increased from 10 to 50% at $25^{\circ}C$, the viscosity increased from 1.65 to 5.14 cp. When the temperature of 40% tagatose solution increased from 15 to $55^{\circ}C$, the viscosity decreased from 4.59 to 2.33cp. The melting onset temperature and endothermic enthalpy of tagatose were $130.4^{\circ}C$ and -202.3 J/g, respectively, which were obtained from the analysis of differential scanning calorimetry. Tagatose showed higher water absorption than sucrose under $85{\sim}100%$ of relative humidity. Tagatose was less soluble than sucrose at $20{\sim}70^{\circ}C$. Water activity of tagatose in 60% concentration was 0.892, which was lower than 0.957 of sucrose solution. Tagatose solution adjusted from pH 2 to pH 12 was stable after 3 days. Amount of tagatose was not changed after heat treatment at $154^{\circ}C$ for 4 hours. But a browning reaction was found and absorbance of a tagatose solution increased with heat treatment.

  • PDF

Isolation and Characterization of a Novel Polysaccharide Producing Bacillus polymyxa A49 KCTC 4648P

  • Ahn, Sung-Gu;Suh, Hyun-Hyo;Lee, Chang-Ho;Moon, Seong-Hoon;Kim, Hee-Sik;Ahn, Keug-Hyun;Kwon, Gi-Seok;Oh, Hee-Mock;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1998
  • The strain A49, which produces a new type of extracellular polysaccharide was isolated from soil samples. From morphological, physiological and biochemical tests, the strain A49 was identified as a Bacillus polymyxa and named Bacillus polymyxa A49. Bacillus polymyxa A49 was found to produce a highly viscous extracellular polysaccharide when grown aerobically in a medium containing glucose as the sole source of carbon. The polysaccharide (A49 POL) showed a homogeneous pattern on gel permeation chromatography (GPC) and its molecular weight was estimated to be about 1.6 mega dalton (mDa). The FT-IR spectrum of A49-POL revealed typical characteristics of polysaccharides. As a result of investigations with HPLC and carbozole assay, A49-POL was found to consist of L-fucose, D-galactose, D-glucose, D-mannose, and D-glucuronic acid, with the molar ratio of these sugars being approximately 1:2:7:50:12. Rheological analysis of A49 POL revealed that it is pseudoplastic and has a higher apparent viscosity at dilute concentrations than does xanthan gum. The consistancy factor of A49 POL was found to be higher, and the flow index of A49 POL lower, than xanthan gum. Its apparent viscosity was comparatively unstable at various temperatures. the A49 POL showed the highest apparent viscosity at pH 3. When salts were added to A49 POL solution, the solution was compatible with up to 10% KCl, 35% NaCl, 55% $CaCl_2$, 55% $MgCl_2$, 55% $K_2HPO_4$, and 110% $Ca({NO_3})_2$, respectively.

  • PDF

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Investigation of alumina(Al2O3) 3D nozzle printing process (알루미나(Al2O3)를 활용한 3D 노즐 프린팅 기술 연구)

  • An, Tae-Kyu;Han, Kyu-Sung;Kim, Ji-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.247-253
    • /
    • 2019
  • 3D printing technology has attracted considerable attention because of its potential to fabricate the intricate design of ceramic products. In this study, ceramic 3D nozzle printing was introduced to manufacture complex alumina products with a ceramic pigment. The alumina paste was formulated by incorporating an elastomer to impart viscoelastic properties. Viscoelastic pastes play an essential role in ceramic 3D nozzle printing. The effects of the viscoelastic properties of the ceramic pastes on their printability were assessed using comprehensive rheological analysis, and various shapes were printed. As a result, the paste with a high yield stress showed better printability. In addition, a ceramic pigment was added to the developed pastes to increase the aesthetics of the printed ceramic structure. The printed ceramic parts were sintered in air at 1300 ℃. The stability of the ceramic pigment was confirmed even after high-temperature sintering.

SLUMPING RESISTANCE AND VISCOELASTICITY OF RESIN COMPOSITE PASTES (치과용 복합레진의 중합 전 slumping resistance와 점탄성)

  • Suh, Hee-Yeon;Lee, In-Bog
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.235-245
    • /
    • 2008
  • The aim of this study was to develop a method for measuring the slumping resistance of resin composites and to relate it to the rheological characteristics. Five commercial hybrid composites (Z100. Z250. DenFil, Tetric Ceram. ClearFil) and a nanofill composite (Z350) were used to make disc-shaped specimens of 2 mm thickness. An aluminum mold with square shaped cutting surface was pressed onto the composite discs to make standardized imprints. The imprints were light-cured either immediately (non-slumped) or after waiting for 3 minutes at $25^{\circ}C$ (slumped). White stone replicas were made and then scanned for topography using a laser 3-D profilometer. Slumping resistance index (SRI) was defined as the ratio of the groove depth of the slumped specimen to that of the non-slumped specimen. The pre-cure viscoelasticity of each composite was evaluated by an oscillatory shear test and normal stress was measured by a squeeze test using a rheometer. Flow test was also performed using a flow tester. Correlation analysis was performed to investigate the relationship between the viscoelastic properties and the SRI. SRI varied between the six materials (Z100 < DenFil < Z250 < ClearFil < Tetric Ceram < Z350). The SRI was strongly correlated with the viscous (loss) shear modulus G' but not with the loss tangent. Also. slumping resistance was more closely related to the resistance to shear flow than to the normal stress. Slumping tendency could be quantified using the imprint method and SRI. The index may be applicable to evaluate the clinical handling characteristics of composites.

  • PDF

SLUMPING RESISTANCE AND VISCOELASTICITY OF RESIN COMPOSITE PASTES (치과용 복합레진의 중합 전 slumping resistance와 점탄성)

  • Suh, Hee-Yeon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.235-245
    • /
    • 2008
  • The aim of this study was to develop a method for measuring the slumping resistance of resin composites and to relate it to the rheological characteristics. Five commercial hybrid composites (Z100, Z250, DenFil, Tetric Ceram, ClearFil) and a nanofill composite (Z350) were used to make disc-shaped specimens of 2 mm thickness. An aluminum mold with square shaped cutting surface was pressed onto the composite discs to make standardized imprints. The imprints were light-cured either immediately (non-slumped) or after waiting for 3 minutes at $25{\circ}C$ (slumped). White stone replicas were made and then scanned for topography using a laser 3-D profilometer. Slumping resistance index (SRI) was defined as the ratio of the groove depth of the slumped specimen to that of the nonslumped specimen. The pre-cure viscoelasticity of each composite was evaluated by an oscillatory shear test and normal stress was measured by a squeeze test using a rheometer. Flow test was also performed using a flow tester. Correlation analysis was performed to investigate the relationship between the viscoelastic properties and the SRI. SRI varied between the six materials (Z100 < DenFil < Z250 < ClearFil < Tetric Ceram < Z350). The SRI was strongly correlated with the viscous (loss) shear modulus G' but not with the loss tangent. Also, slumping resistance was more closely related to the resistance to shear flow than to the normal stress. Slumping tendency could be quantified using the imprint method and SRI. The index may be applicable to evaluate the clinical handling characteristics of composites.