• Title/Summary/Keyword: rhPDGF-BB

Search Result 3, Processing Time 0.016 seconds

EFFECT OF RHPDGF-BB AND RHBMP-2 ON OSSEOINTEGRATION OF TITANIUM IMPLANTS AT PERIIMPLANT BONE DEFECTS GRAFTED WITH HYDROXYAPATITE: MICRO-CT AND HISTOLOGIC ANALYSIS (Hydroxyapatite를 이식한 임플란트 주위 골결손부에서 rhPDGF-BB와 rhBMP-2가 골내 임플란트 osseointegration에 미치는 영향: Micro-CT 분석과 조직학적 평가)

  • Park, Jee-Hyun;Hwang, Sun-Jung;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.461-468
    • /
    • 2009
  • Purpose: Platelet derived growth factor(PDGF)-BB and bone morphogenetic protein(BMP)-2 are well-known representative growth factors. The purposes of this study were to investigate the effect of rhPDGFBB and rhBMP-2 on osseointegration of titanium implants at periimplant bone defects grafted with hydroxyapatite and to evaluate the feasibility of imaging bone structures around screw-type titanium implant with micro-CT. Materials and Methods: The first molar and all premolars in the mandible region of four beagle dogs were extracted. Following a healing period of 4 months, three $8{\times}8{\times}6mm$-sized bony defects were formed and screw-type titanium implants were placed with hydroxyapatite(HA) block and growth factors; Control group, PDGF group and BMP group. Two months post-implantation, the mandible was harvested. Bone volume(BV), bone-to-implant contact(BIC) and bone mineral density(BMD) were analyzed with micro-CT and histology. Results: According to micro-CT analysis, BV and BMD measures of PDGF and BMP group were significantly higher than control group(BV; PDGF group: $p{\fallingdotseq}0.011$, BMP group: $p{\fallingdotseq}0.006$/BMD; PDGF group: $p{\fallingdotseq}0.020$, BMP group: $p{\fallingdotseq}0.011$) and BIC measures of BMP group were significantly higher than PDGF group($p{\fallingdotseq}0.015$). In histologic evaluation, BIC measures of BMP group was significantly higher than PDGF group($p{\fallingdotseq}0.048$). The values of BV in histologic sections were higher than in micro-CT images and the values of BIC in micro-CT images were higher than in histologic sections. Conclusion: The findings of this experimental study indicates that the use of rhPDGF-BB and rhBMP-2 can increase new bone formation in a large bony defect around titanium implant, and rhBMP-2 is more effective than rhPDGF-BB. Micro-CT can be considered useful for assessment as a rapid and nondestructive method for 3-dimensional measurement of bone healing around implants. Further study is necessary, however, to remove metal artifacts around titanium implant and to standardize the method.

Hyaluronic acid and proteoglycan link protein 1 suppresses platelet-derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells

  • Dan Zhou;Hae Chan Ha;Goowon Yang;Ji Min Jang;Bo Kyung Park;Bo Kyung Park;In Chul Shin;Dae Kyong Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.445-450
    • /
    • 2023
  • The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases.

Effects of the immobilization of heparin and rhPDGF-BB to titanium surfaces for the enhancement of osteoblastic functions and anti-inflammation

  • Huh, Jung-Bo;Lee, Jeong-Yo;Lee, Kyung-Lae;Kim, Sung-Eun;Yun, Mi-Jung;Shim, Ji-Suk;Shim, June-Sung;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.152-160
    • /
    • 2011
  • PURPOSE. This study was to investigate the effects of recombinant human platelet-derived growth factor (rhPDGF-BB) and heparin to titanium surfaces for enhancement of osteoblastic functions and inhibition of inflammation activity. MATERIALS AND METHODS. The anodized titanium discs, not coated with any material, were used as a control group. In heparinized-Ti group, dopamine was anchored to the surface of Ti substrates, and coated with heparin. In PDGF-Ti group, rhPDGF-BB was immobilized onto heparinized Ti surface. The surface morphologies were investigated by the scanning electron microscope in each group. The release kinetics of rhPDGF-BB were analyzed, and cytotoxicity tests for each group were conducted. The biocompatibilities were characterized by measuring cell proliferation, alkaline phosphatase activity, and calcium deposition using MG-63 cells. Statistical comparisons were carried out by one-way ANOVA tests. Differences were considered statistically significant at $^*$P<.05 and $^{**}$P<.001. RESULTS. The combination of rhPDGF-BB and heparin stimulated alkaline phosphatase activity and OCN mRNA expression in osteoblastic cells ($^*$P<.05 and $^{**}$P<.001). MG-63 cells grown on PDGF-Ti had significantly higher amounts of calcium deposition than those grown on anodized Ti ($^{**}$ P<.001). Heparinized Ti was more anti-inflammatory compared to anodized Ti, when exposed to lipopolysaccharide using the transcript levels of TNF-${\alpha}$ and IL-6 of proinflammatory cytokine ($^*$P<.05 and $^{**}$P<.001). CONCLUSION. The result of this study demonstrated that the incorporation of rhPDGF-BB and heparin onto Ti surface enhanced osteoblastic functions and inhibited inflammation.