• Title/Summary/Keyword: review rating prediction

Search Result 25, Processing Time 0.021 seconds

The Detection of Well-known and Unknown Brands' Products with Manipulated Reviews Using Sentiment Analysis

  • Olga Chernyaeva;Eunmi Kim;Taeho Hong
    • Asia pacific journal of information systems
    • /
    • v.31 no.4
    • /
    • pp.472-490
    • /
    • 2021
  • The detection of products with manipulated reviews has received widespread research attention, given that a truthful, informative, and useful review helps to significantly lower the search effort and cost for potential customers. This study proposes a method to recognize products with manipulated online customer reviews by examining the sequence of each review's sentiment, readability, and rating scores by product on randomness, considering the example of a Russian online retail site. Additionally, this study aims to examine the association between brand awareness and existing manipulation with products' reviews. Therefore, we investigated the difference between well-known and unknown brands' products online reviews with and without manipulated reviews based on the average star rating and the extremely positive sentiment scores. Consequently, machine learning techniques for predicting products are tested with manipulated reviews to determine a more useful one. It was found that about 20% of all product reviews are manipulated. Among the products with manipulated reviews, 44% are products of well-known brands, and 56% from unknown brands, with the highest prediction performance on deep neural network.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

A Methodology for Predicting Changes in Product Evaluation Based on Customer Experience Using Deep Learning (딥러닝을 활용한 고객 경험 기반 상품 평가 변화 예측 방법론)

  • An, Jiyea;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.

A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation (협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구)

  • Lee, Seok-Jun;Lee, Hee-Choon
    • Information Systems Review
    • /
    • v.9 no.1
    • /
    • pp.85-103
    • /
    • 2007
  • The purpose of this study is to evaluate the performance of collaborative filtering recommender algorithms for better prediction accuracy of the customer's preference. The accuracy of customer's preference prediction is compared through the MAE of neighborhood based collaborative filtering algorithm and correspondence mean algorithm. It is analyzed by using MovieLens 1 Million dataset in order to experiment with the prediction accuracy of the algorithms. For similarity, weight used in both algorithms, commonly, Pearson's correlation coefficient and vector similarity which are used generally were utilized, and as a result of analysis, we show that the accuracy of the customer's preference prediction of correspondence mean algorithm is superior. Pearson's correlation coefficient and vector similarity used in two algorithms are calculated using the preference rating of two customers' co-rated movies, and it shows that similarity weight is overestimated, where the number of co-rated movies is small. Therefore, it is intended to increase the accuracy of customer's preference prediction through expanding the number of the existing co-rated movies.

Sentiment Analysis of movie review for predicting movie rating (영화리뷰 감성 분석을 통한 평점 예측 연구)

  • Jo, Jung-Tae;Choi, Sang-Hyun
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.161-177
    • /
    • 2015
  • Currently, the influence of the Internet portal sites that can make it quick and easy to contact the vast amount of information is increasing. Users can connect the Internet through a portal to obtain information, such as communication between Internet users, which can be used to meet a variety of purposes. People are exposed to a variety of information from other users in the search for a movie and get information. The impact on the reviews and ratings with the limited number of characters of the film allows users to form a relationship to the movie, decide whether you want to see the movie or find another movie. but, the user can not read the whole movie review. When user see the overall evaluation, the user can receive the correct information. This research conducted a study on the prediction of the rating by the use of review data. Information of reviews, is divided into two main areas: the"fact" and "opinion". "Fact" is to convey the dispassionate information and "Opinion" is, to represent the user's feelings. In this study, we built sentiment dictionary based on the assessment and evaluation of the online review and applied to evaluate other movies. In the comparative study with a simple emotion evaluation technique, we found the suggested algorithm got the more accurate results.

  • PDF

A Study on Prediction and Development of Prospective Fisheries-Related Jobs in Korea (우리나라 수산업의 유망직종 예측과 개발에 관한 연구)

  • Kim, Sam-Kon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.1
    • /
    • pp.36-45
    • /
    • 2008
  • The purpose of this study was to explore new fisheries-related jobs in the future. The study is based on a thorough literature review and in-depth interviews with experts in the fisheries industry. The major findings of the study were as follows: First, new fisheries-related jobs that surpass the fitness rating of 90% and earn more than 3 on the prospect scale are expected to be found mostly in professional fishery sectors. In the production and processing sectors, fishery quality control manager, marine product cooks, and raw fish cooks looked most promising. In the fishery marketing and distribution section, on the other hand, marine tour consultants, marine product distribution consultants, underwater guides, online marine product traders, marine sports consultants, and marine safety specialists ranked high on the list.

Semantic analysis via application of deep learning using Naver movie review data (네이버 영화 리뷰 데이터를 이용한 의미 분석(semantic analysis))

  • Kim, Sojin;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.19-33
    • /
    • 2022
  • With the explosive growth of social media, its abundant text-based data generated by web users has become an important source for data analysis. For example, we often witness online movie reviews from the 'Naver Movie' affecting the general public to decide whether they should watch the movie or not. This study has conducted analysis on the Naver Movie's text-based review data to predict the actual ratings. After examining the distribution of movie ratings, we performed semantics analysis using Korean Natural Language Processing. This research sought to find the best review rating prediction model by comparing machine learning and deep learning models. We also compared various regression and classification models in 2-class and multi-class cases. Lastly we explained the causes of review misclassification related to movie review data characteristics.

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

A Study on Customer Review Rating Recommendation and Prediction through Online Promotional Activity Analysis - Focusing on "S" Company Wearable Products - (온라인 판매촉진활동 분석을 통한 고객 리뷰평점 추천 및 예측에 관한 연구 : S사 Wearable 상품중심으로)

  • Shin, Ho-cheol
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.118-129
    • /
    • 2022
  • The purpose of this report is to study a strategic model of promotion activities through various analysis and sales forecasting by selecting wearable products for domestic online companies and collecting sales data. For data analysis, various algorithms are used for analysis and the results are selected as the optimal model. The gradation boosting model, which is selected as the best result, will allow nine independent variables to be entered, including promotion type, price, amount, gender, model, company, grade, sales date, and region, when predicting dependent variables through supervised learning. In this study, the review values set as dependent variables for each type of sales promotion were studied in more detail through the ensemble analysis technique, and the main purpose is to analyze and predict them. The purpose of this study is to study the grades. As a result of the analysis, the evaluation result is 95% of AUC, and F1 is about 93%. In the end, it was confirmed that among the types of sales promotion activities, value-added benefits affected the number of reviews and review grades, and that major variables affected the review and review grades.