• Title/Summary/Keyword: reversible magnetization

Search Result 20, Processing Time 0.024 seconds

Effect of Al Doping on the Anisotropy of $MgB_2$ Single Crystals (Al 첨가가 $MgB_2$ 단결정의 비등방성에 미치는 영향에 대한 연구)

  • Kang, Byeong-Won;Lee, Hyun-Sook;Park, Min-Seok;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.183-187
    • /
    • 2008
  • We have studied superconducting properties of $Mg_{1-x}Al_xB_2$ single crystals from reversible magnetization measurements. It was found that the upper critical fields $H_{c2}$ were decreased for both H // c and H // ab as Al is substituted for Mg. As a result, the large anisotropy of $H_{c2}$ observed in pure $MgB_2$, which is considered as one of the characteristics of two-gap superconductor, was decreased with Al doping. On the other hand, the irreversibility fields $H_{irr}$ were increased for x = 0.1 and were significantly decreased for x = 0.2. In contrary to the anisotropy of $H_{c2}$, the anisotropy of $H_{irr}$ was increased as Al concentration increases.

  • PDF

Variation of Asymmetric Hysteresis Loops with Annealing Temperature and Time (열처리 온도와 시간에 따른 비대칭 자기 이력 곡선의 변화)

  • 신경호;민성혜;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.251-260
    • /
    • 1995
  • It has been reported that Co-based amorphous ferromagnetic alloys annealed in a small magnetic field develop a reproducible, asymmetric hysteresis loop. If the direction of the field during annealing is regarded as +, the magnetization reversal from - to + is smooth and reversible, with its slope determined by the demagnetizing field of the sample. This phenomenon is called the asymmetric magnetization reversal (AMR). The shape of the hyster-esis loop depends sensitively on the condition during the anneal and the alloy composition. Here, we report on the effect of the annealing temperature and time on AMR in a zero magnetostrictive ferromagnetic amorphous alloy. The AMR effect develops in a very short time at a reasonably high temperature, but is stabilized by annealing for a prolonged time.

  • PDF

Dynamic Responses in Ultra-Soft Magnetic Thin Films (초 연자성 박막에서의 동적 자화 거동)

  • 정인섭
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • The magnetization dynamics was investigated by solving possible origins of overdamped susceptibility observed in ultra-soft magnetic amorphous thin films. The experimental high frequency spectrum and computational spectrum calculated from Gilbert's equation of motion were compared in order to find proper damping factor $\alpha{\approx}20$ and demagnetizing coefficients $D_{x}{\approx}D_{y}{\approx}D_{z}{\approx}0$ for ultra-soft magnetic films. A magnetization vortex mode was, then, proposed to explain the origin of the reversible susceptibility and other anomalies of the ultra-soft magnetic heterogeneous thin films. In this mode it is suggested that there occur, within the nanoscale structural features of the ultra-soft films, incoherent rotational spin motions that are highly damped by the energy transfer from short wavelength spin wave modes and local defect structure mode interactions.

  • PDF

Study on the Elimiation of Irreversible Magnetic Components Using Anhysteretization in a Magnetostrictive Vibration Sensor (자왜형 진동 센서의 비이력화를 통한 비가역적 자화성분 제거에 관한 연구)

  • Lee, Ho-Cheol;Bae, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.841-848
    • /
    • 2010
  • Previous experimental results show that the magnetostrictive transducer has the peculiar characteristic with relation to their reversible magnetization and its practical usage will be hindered by this phenomena. In this paper, the idea of anhysteretization is adopted in order to solve this problem. The experimental results reveal that the anhysteretization can get rid of the extraordinary phenomena which are occurred by the change of biasing magnetic field. The effects of two important parameters, which are the amplitude and the decaying time of this process, on the anhysteretization are investigated experimentally. Finally the best operating condition is proposed in order to maximize the sensitivity under the anhysteretization.

Synthesis and Photoinduced Magnetic Properties of a Mn12 Single Molecule Magnet by the cis-trans Isomerism of Azobenzene

  • George, Sheby M.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1143-1146
    • /
    • 2009
  • [$Mn_{12}O_{12}(azo-L)_{16}(H_2O)_4$] (1), a new Mn12 single molecule magnet containing a photochromic azobenzene ligand, has been successfully synthesized by substitution of acetate ligand of Mn12 with 6-[4-{4-hexyloxyphenyl( azo)}-phenoxy]hexanoic-1-acid. The reversible photoisomerization of the azobenzene group was confirmed by UV-visible absorption spectroscopy. The temperature and field dependence of dc susceptibility and the temperature and the frequency dependence of ac susceptibility were measured for the cis and the trans isomer of 1. The magnetization value of the cis isomer in dc measurement is higher than that of the trans isomer. The cis isomer of 1 has a slower relaxation because cis-trans photoisomerization of the azobenzene group in peripheral ligands induces changes in its structure and dipole moment.

Exchange Anisotropy of Polycrystalline Ferromagnetic/Antiferromagnetic Bilayers

  • Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.80-93
    • /
    • 2002
  • The role of magnetic anisotropy of the antiferromagnetic layer on the magnetization process of exchange coupled polycrystalline ferromagnetidantiferromagnetic bilayers is discussed. In order to elucidate the magnetic torque response of Ni-Fe/Mn-Ir bilayers, the single spin ensemble model is newly introduced, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the antiferromagnetic grains. The mechanism of the reversible inducement of the exchange anisotropy along desirable directions by field cooling procedure is successfully explained with the new model. Unidirectional anisotropy constant, J$k$, of polycrystalline Ni-Fe/Mn-Ir and Co-Fe/Mn-Ir bilayers is investigated as functions of the chemical composition of both the ferromagnetic layer and the antiferromagnetic layer. The effects of microstructure and surface modification of the antiferromagnetic layer on JK are also discussed. As a notable result, an extra large value of J$k$, which exceeds 0.5 erg/cm$^2$, is obtained for $Co_{70}Fe_{30}Mn_{75}Ir_{25}$ bilayer with the ultra-thin (50${\AA}$∼100${\AA}$) Mn-Ir layer. The exchange anisotropy of $Co_{70}Fe_{30}$ 40 ${\AA}/Mn_{75}Ir_{25}$ 100 ${\AA}$ bilayer is stable for thermal annealing up to $400{^{\circ}C}$, which is sufficiently high for the application of spin valve magnetoresistive devices.

A study on vector modeling using Preisach and Stoner-Wholfarth Model (Preisach 모델과 Stoner-Wholfarth 모델을 결합한 벡터 모델링 기법에 관한 연구)

  • Lee, Jung-Woo;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.62-64
    • /
    • 1996
  • Two current approaches for modeling the vector magnetic hysteretic process are the vector Preisach models and those models based on a system of noninteracting pseudo-particles. The pseudo-particles are intended to mimic the average behavior of real media particles. The simplest switching mechanisms of pseudoparticles is the Stoner-Wholfarth model. The Preisach models are quite precise in specifying the experimental input to the models. The vector properties of the Preisach models are, however, inadequate. This is partly because of the questionable assumptions used in coupling the various vector hysteresis components. Also these models do not include reversible magnetization changes. Unlike Preisach counterpart, the Stoner-Wholfarth model is inherently vector in nature. This is because spatial distribution and switching mechanisms are imposed on the system of pseudo-particles, so they come closer to representing the physical reality. The lack of interaction between pseudo-particles exclude the usefulness of the Stoner-Wholfarth model for small fields when the medium is traversing minor loops. The present work is an attempt at combining the advantages of above two models into one composite model, including the effect of particle interaction.

  • PDF

TiO2 Nano-doping Effect on Flux Pinning and Critical Current Density in an MgB2 Superconductor

  • Kang, J.H.;Park, J.S.;Lee, Y.P.;Prokhorov, V.G.
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.15-18
    • /
    • 2011
  • We have studied the $TiO_2$ doping effects on the flux pinning behavior of an $MgB_2$ superconductor synthesized by the in-situ solid-state reaction. From the field-cooled and zero-field-cooled temperature dependences of magnetization, the reversible-irreversible transition of $TiO_2$-doped $MgB_2$ was determined in the H-T diagram (the temperature dependence of upper critical magnetic field and irreversibility line). For comparison, the similar measurements are also obtained from SiC-doped $MgB_2$. The critical current density was estimated from the width of hysteresis loops in the framework of Bean's model at different temperatures. The obtained results manifest that nano-scale $TiO_2$ inclusions served as effective pinning centers and lead to the enhanced upper critical field and critical current density. It was concluded that the grain boundary pinning mechanism was realized in a $TiO_2$-doped $MgB_2$ superconductor.

The Effect of Hydrogen Reduction Treatment on Properties of Ba-ferrite (환원처리가 Ba-ferrite의 물성에 미치는 영향)

  • 홍양기;정홍식;김현준
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 1997
  • Physical and magnetic behaviors of reduced Co-Zn-Ti-Sn substituted Ba-ferrite particles with hydrogen are different from those of reduced-pure Ba-ferrite particles. The coercivity of substituted Ba-feffite particles shows a peaking effect with the reduction temperature ranging from 250 to 520 $^{\circ}C$, while the coercivity of pure Ba-ferrite decreases monotonically. The reduction process of substituted Ba-ferrite has been found to be devided into three steps. At the first and second steps, the magneto-plumbite structure maintained. When the reduced-substituted Ba-ferrite particles are reoxidized, the coercivity is reversible at the first step but irreversible at the second step. During the third step of reduction process above 410 $^{\circ}C$. The magneto plumbite structure was collapsed with formation of $\alpha$-Fe and $BaFeO_{3-x}$ phases and consequently the coercivity distribution is broaden and the coercivity irreversible. The coercivity and saturation magnetization decreases and increases up to 130 emu/g respectively. In this study, it is found that the substituted elements prevent the magneto-plumbite structure from collapse during the reduction process and furthermore migrate from the magnetic sites of $2a+4f_{IV}$, 2b, and 12k to $4f_{VI}$ and 12k'. An increase in the coercivity before the collapse of magneto-plumbite structure is attributed to the migration of cations in hexagonal Ba-ferrite structure.

  • PDF