Reversible Magnetization of Co Doped BaFe₂As₂

Changho Choi^a, Soo Hyun Kim^a, Ki-Young Choi^a, Myung-Hwa Jung^a, X. F. Wang^b, X. H. Chen^b, X. L. Wang^c, and Sung-Ik Lee^a

^aNational Creative Research Initiative Center for Superconductivity, Department of Physics, Sogang University, Seoul 121-742, Republic of Korea

^bHefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

^cInstitute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia

We present reversible magnetization measurements for applied fields in the range from 0.1 Tesla to 7 Tesla while varying the temperature for optimally doped BaFe_{1.8}Co_{0.2}As₂ single crystals with T_c =23.6 K. The rounding fluctuating magnetization was observed in the reversible range of magnetization for temperatures above 18 K. This fluctuation effect is quite small compared to that in high- temperature cuprate superconductors, but is still large enough to obtain the essence of the physical properties in this iron-pnictide superconductor. This reversible magnetic fluctuation follows a three-dimensional scaling form in the critical fluctuation region for fields above 1 Tesla, which indicates that this iron-pnictide superconductor belongs to the class of three-dimensional superconductors

Keywords: Fluctuation effect, FeAs superconductor, Magnetization