• Title/Summary/Keyword: reverse transcriptase polymerase chain reaction

Search Result 349, Processing Time 0.034 seconds

Role of Matrix Metalloproteinases in Degenerative Lumbar Disc; Molecular and Immunohistochemical Study

  • Ryu, Kyeong-Sik;Cho, Sung-Jin;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.363-368
    • /
    • 2006
  • Objective : Little is known about the comprehensive molecular and biological mechanism on the development of the degeneration of the intervertebral disc. Many kinds of matrix metalloproteinase[MMP] initiate the degradation of the extracellular matrix including several kinds of collagens and proteoglycans. We compared molecular and immunohistochemical features of degenerated intervertebral disc and normal counterparts in order to investigate the role of MMP-1, 2, 3, 9. Methods : We have evaluated MMP-1, 2, 3, 9 expression in 30 surgically resected lumbar disc from degenerative disc disease patients and 5 normal control cases. RT-PCR[reverse transcriptase-polymerase chain reaction] and immunohistochemistry were performed. Results : By RT-PCR, normal tissue samples showed merely scant expression of MMP-1, 2, 3, 9 mRNA, but degenerated disc samples revealed more pronounced expression. mRNA amplifications were detected in 60%, 63.3%, 70%, 53.3% cases By immunohistochemistry, normal tissue samples showed minimal protein expression of MMP-1, 2, 3, 9, but degenerated disc samples revealed more pronounced expression. Protein expressions were detected in 73.3%, 63.3%, 76.7%, 63.3% cases. Both the mRNA amplification and protein overexpression rates were significantly higher in degenerated disc than in the normal tissue. Concordance between both the mRNA amplification and protein expressions of MMP-1, 3, 9 were not observed, but there is well correlation in MMP-2 expression. Conclusion : We concluded that the over-expressions of the MMP-1, 2, 3, 9 may contribute to the development of degeneration of the intervertebral disc.

Glutathione Reductase from Oryza sativa Increases Acquired Tolerance to Abiotic Stresses in a Genetically Modified Saccharomyces cerevisiae Strain

  • Kim, Il-Sup;Kim, Young-Saeng;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1557-1567
    • /
    • 2012
  • Glutathione reductase (GR, E.C. 1.6.4.2) is an important enzyme that reduces glutathione disulfide (GSSG) to a sulfydryl form (GSH) in the presence of an NADPH-dependent system. This is a critical antioxidant mechanism. Owing to the significance of GR, this enzyme has been examined in a number of animals, plants, and microbes. We performed a study to evaluate the molecular properties of GR (OsGR) from rice (Oryza sativa). To determine whether heterologous expression of OsGR can reduce the deleterious effects of unfavorable abiotic conditions, we constructed a transgenic Saccharomyces cerevisiae strain expressing the GR gene cloned into the yeast expression vector p426GPD. OsGR expression was confirmed by a semiquantitative reverse transcriptase polymerase chain reaction (semiquantitative RT-PCR) assay, Western-blotting, and a test for enzyme activity. OsGR expression increased the ability of the yeast cells to adapt and recover from $H_2O_2$-induced oxidative stress and various stimuli including heat shock and exposure to menadione, heavy metals (iron, zinc, copper, and cadmium), sodium dodecyl sulfate (SDS), ethanol, and sulfuric acid. However, augmented OsGR expression did not affect the yeast fermentation capacity owing to reduction of OsGR by multiple factors produced during the fermentation process. These results suggest that ectopic OsGR expression conferred acquired tolerance by improving cellular homeostasis and resistance against different stresses in the genetically modified yeast strain, but did not affect fermentation ability.

Notochordal Cells Influence Gene Expression of Inflammatory Mediators of Annulus Fibrosus Cells in Proinflammatory Cytokines Stimulation

  • Moon, Hong-Joo;Joe, Hoon;Kwon, Taek-Hyun;Choi, Hye-Kyoung;Park, Youn-Kwan;Kim, Joo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Objective : Notochordal cells in the intervertebral disc interact with nucleus pulposus (NP) cells and support the maintenance of disc homeostasis by regulation of matrix production. However, the influence of notochordal cells has not been evaluated in the annulus fibrosus (AF), which is the primary pain generator in the disc. We hypothesized that the notochordal cell has the capacity to modulate inflammatory mediators secreted by AF cells secondary to stimulation. Methods : Notochordal and AF cells were isolated from adult New Zealand white rabbits. AF pellets were cultured with notochordal cell clusters or in notochordal cell-conditioned media (NCCM) for 24 or 48 hours with proinflammatory cytokines at varying concentrations. Gene expression in AF pellets were assayed for nitric oxide synthase (iNOS), cyclo-oxygenase (COX)-2, and interleukin (IL)-6 by real time reverse transcriptase polymerase chain reaction (RT-PCR). Results : AF pellet in NCCM significantly decreased the iNOS and COX-2 messenger ribonucleic acid (mRNA) levels compared to AF pellets alone and AF pellets with notochordal cells (p < 0.05). AF pellet resulted in dose-dependent iNOS and COX-2 expression in response to IL-$1{\beta}$, stimulation, demonstrating that 1 ng/ml for 24 hours yielded a maximal response. AF pellet in NCCM significantly decreased the expression of iNOS and COX-2 in response to 1ng/ml IL-$1{\beta}$, stimulation at 24 hours (p < 0.05). There was no difference in IL-6 expression compared to AF pellets alone or AF pellets with notochordal cell clusters. Conclusion : We conclude that soluble factors from notochordal cells mitigate the gene expression of inflammatory mediators in stimulated AF, as expected after annular injury, suggesting that notochordal cells could serve as a novel therapeutic approach in symptomatic disc development.

Inhibitory Effects of Marine Natural Products on Melanogenesis in B16 Melanoma Cells (B16 멜라닌 세포에서 해양소재 추출물의 멜라닌 생성 저해 효과)

  • Lee, Chan;Jang, Jung-Hee;Ahn, Eun-Mi;Park, Chan-Ik
    • The Korea Journal of Herbology
    • /
    • v.27 no.4
    • /
    • pp.73-80
    • /
    • 2012
  • Objectives : Under normal condition melanin protects the skin from extracellular stimuli including ultraviolet (UV)-induced oxidative skin damages, but excess production and accumulation of melanin can induce hyperpigmentation causing esthetic problems. Therefore, in this study we tried to search for natural skin whitening materials from marine natural resources. Methods : Water and ethanol extracts of marine natural resources were prepared from Porphyra thalli (PT), Laminariae thallus (LT), Ostreae concha (OC), Sargassum thallus (ST), Undaria thallus (UT), Codium thalli (CT), Enteromorpha thalli (ET), Syngnathoides biaculeatus (SB), and Hippocampus coronatus (Hc). Their effects against UVB and ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH)-induced melanogenesis were investigated based on melanin formation in B16 mouse melanoma cells. The mRNA and protein expression of enzymes involved in the melanogenic process were further examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Results : Water extract of Ostreae concha (OCW/E) effectively inhibited UVB and ${\alpha}$-MSH-induced melanin production in B16 melanocytes, which seemed to be mediated by inhibition of mRNA expression of tyrosinase and tyrosinase-related protein 1 (TRP-1). In another experiment, ethanol extracts from Porphyra thalli (PTE/E), Laminariae thallus (LTE/E), Sargassum thallus (STE/E), Undaria thallus (UTE/E), Codium thalli (CTE/E), Syngnathoides biaculeatus (SBE/E), and Hippocampus coronatus (HcE/E) significantly suppressed UVB and ${\alpha}$-MSH-induced melanin formation. Furthermore, ethylacetate fraction isolated form LTE/E (LTE/EEt) decreased UVB and ${\alpha}$-MSH-elevated extracellular melanin levels via inhibition of tyrosinase protein expression. Conclutions : These results suggest that marine natural resources such as Porphyra thalli, Laminariae thallus, Ostreae concha, Sargassum thallus, Undaria thallus, Codium thalli, Syngnathoides biaculeatus and Hippocampus coronatus have anti-melanogenic effects, thereby exhibiting high potentials to be utilized as one of the ingredients for the development of new whitening functional cosmetics.

STUDY ON THE EXPRESSION OF mRNA OF TUMOR NECROSIS FACTOR-α AND INTERLEUKIN-6 IN THE CELL LINES OF SQUAMOUS CELL CARCINOMA (구강 편평상피세포암종 세포주에서 Tumor Necrosis Factor-α와 Interleukin-6의 mRNA 발현에 관한 연구)

  • Ahn, Jin-Su;Kim, Kyung-Wook;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.535-542
    • /
    • 2001
  • The purpose of this study was to examine the mRNA levels of TNF-${\alpha}$ and IL-6 in the cell lines of normal oral keratocyte and oral squamous cell carcinoma. Total RNA was extracted from these cell lines, observed under UV light, developed by radiographic films of PCR products via reverse transcriptase polymerase chain reaction(RT-PCR) amplication, and measured with densitometer. Each mRNA level of these cell lines divided by ${\beta}$-actin mRNA level was compared to that of normal control group. The results were as follows: 1. Higher mRNA expression of TNF-${\alpha}$ than IL-6 in the normal oral epithelial cell line. 2. In general, expression of mRNA of IL-6 appeared 3-4 times more in tumor cell lines than in control group. 3. mRNA expression of TNF-${\alpha}$ showed variable expression in tumor cell lines, unlike normal cell line. 4. There are no special connections between differentiation of oral cancer cell lines and mRNA expression of TNF-${\alpha}$ and IL-6. From the above results, expression of mRNA of IL-6 in the cell lines of squamous cell carcinoma used in this study has higher than the normal oral epithelial cell line, but there are no relationship between the differentiation of oral cancer cell lines and the expression of mRNA of TNF-${\alpha}$ and IL-6.

  • PDF

Neurogenic differentiation of human dental stem cells in vitro

  • Lee, Joo-Hee;Um, Soyoun;Song, In-Seok;Kim, Hui Young;Seo, Byoung Moo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the neurogenic differentiation of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Materials and Methods: After induction of neurogenic differentiation using commercial differentiation medium, expression levels of neural markers, microtubule-associated protein 2 (MAP2), class III ${\beta}$-tubulin, and glial fibrillary acidic protein (GFAP) were identified using reverse transcriptase polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Results: The induced cells showed neuron-like morphologies, similar to axons, dendrites, and perikaryons, which are composed of neurons in DPSCs, PDLSCs, and SCAP. The mRNA levels of neuronal markers tended to increase in differentiated cells. The expression of MAP2 and ${\beta}$-tubulin III also increased at the protein level in differentiation groups, even though GFAP was not detected via immunocytochemistry. Conclusion: Human dental stem cells including DPSCs, PDLSCs, and SCAP may have neurogenic differentiation capability in vitro. The presented data support the use of human dental stem cells as a possible alternative source of stem cells for therapeutic utility in the treatment of neurological diseases.

Expression and Clinical Significance of MicroRNA-376a in Colorectal Cancer

  • Mo, Zhan-Hao;Wu, Xiao-Dong;Li, Shuo;Fei, Bing-Yuan;Zhang, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9523-9527
    • /
    • 2014
  • The incidence of colorectal cancer (CRC) is increasing in many Asian countries and microRNAs have already been proven to be associated with tumorigenesis. Currently, microRNA-376a (miR-376a) expression and association with clinical factors in CRC remains unclear. In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was carried out on 53 matched pairs of CRC and adjacent normal mucosa to investigate the expression levels of miR-376a. According to the high or low expression of miR-376a, patients were divided into two groups. The relationship between miR-376a expression and clinicopathological factors of 53 patients was evaluated. Survival analysis of 53 CRC patients was performed with clinical follow-up information and survival curves were assessed by the Kaplan-Meier method. Immunohistochemistry (IHC) staining was performed on sections of paraffin-embedded tissue to investigate the vascular endothelial growth factor (VEGF) expression. MiR-376a showed low expression in cancer tissues compared to the adjacent normal tissues and altered high miR-376a expression tended to be positively correlated with advanced lymph node metastasis and shorter patient survival. VEGF IHC positivity was significantly more common in patients with high expression levels of miR-376a.Those results demonstrated that miR-376a may be a meaningful prognostic biomarker and potential therapeutic target in colorectal cancer.

Prediction and Annotation of ABC Transporter Genes from Magnaporthe oryzae Genome Sequence (벼도열병균 게놈서열로부터 ABC transporter 유전자군의 예측 및 특성 분석)

  • Kim, Yong-Nam;Kim, Jin-Soo;Kim, Su-Young;Kim, Jeong-Hwan;Lee, Jong-Hwan;Choi, Woo-Bong
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.176-182
    • /
    • 2010
  • Magnaporthe oryzae is destructive plant-pathogenic fungus and causes rice blast. The pathogen uses several mechanisms to circumvent the inhibitory actions of fungicides. ATP-binding cassette (ABC) transporters are known to provide protection against toxic compounds in the environment. PC facilitated bioinformatic analysis, particularly with respect to accessing and extracting database information and domain identification. We predicted ABC transporter genes from the M. oryzae genome sequence with computation and bioinformatics tools. A total of thirty three genes were predicted to encode ABC transporters. Three of thirty three putative genes corresponded to three known ABC transporter genes (ABC1, ABC2 and ABC3). Copy numbers of the ABC transporter genes were proven by Southern blot analysis, which revealed that twenty genes tested exist as a single copy. We amplified the DNA complementary to RNA corresponding to eleven of these by reverse transcriptase polymerase chain reaction.

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Role of IL-15 in Sepsis-Induced Skeletal Muscle Atrophy and Proteolysis

  • Kim, Ho Cheol;Cho, Hee-Young;Hah, Young-Sool
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.6
    • /
    • pp.312-319
    • /
    • 2012
  • Background: Muscle wasting in sepsis is associated with increased proteolysis. Interleukin-15 (IL-15) has been characterized as an anabolic factor for skeletal muscles. Our study aims to investigate the role of IL-15 in sepsis-induced muscle atrophy and proteolysis. Methods: Mice were rendered septic either by cecal ligation and puncture or by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg i.p.). Expression of IL-15 mRNA and protein was determined by reverse transcriptase polymerase chain reaction and Western blot analysis in the control and septic limb muscles. C2C12 skeletal muscle cells were stimulated in vitro with either LPS or dexamethasone in the presence and absence of IL-15 and sampled at different time intervals (24, 48, or 72 hours). IL-15 ($10{\mu}g/kg$) was intraperitoneally administered 6 hours before sepsis induction and limb muscles were sampled after 24 hours of sepsis. Cathepsin L activity was determined to measure muscle proteolysis. Atrogin-1 and muscle-specific ring finger protein 1 (MuRF1) expressions in limb muscle protein lysates was analyzed. Results: IL-15 mRNA expression was significantly lower in the limb muscles of septic mice compared to that of controls. Cathepsin L activity in C2C12 cells was significantly lower in presence of IL-15, when compared to that observed with individual treatments of LPS or dexamethasone or tumor necrosis factor ${\alpha}$. Further, the limb muscles of mice pre-treated with IL-15 prior to sepsis induction showed a lower expression of atrogin-1 and MuRF1 than those not pre-treated. Conclusion: IL-15 may play a role in protection against sepsis-induced muscle wasting; thereby, serving as a potential therapeutic target for sepsis-induced skeletal muscle wasting and proteolysis.