• Title/Summary/Keyword: reverse osmosis system

Search Result 130, Processing Time 0.019 seconds

Feasibility of a two step microfiltration and reverse osmosis membrane system for reuse of tunnel wastewater (터널폐수 재이용을 위한 통합형 멤브레인 시스템의 적용)

  • Lee, Jae-Hyun;Jeong, Se-Uk;Kim, Young Mo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.779-785
    • /
    • 2013
  • This study investigated the applicability of a two step microfiltration(MF) and reverse osmosis(RO) membrane system for reuse of tunnel wastewater. In this two step process, the MF system first treated only micropollutants in tunnel wastewater such as suspended solids(SS) and heavy metals, achieving less than 0.2 NTU turbidity, less than 1.1 mg/L chemical oxygen demand($COD_{Mn}$) and less than 0.8 mg/L total manganese(Mn). The RO system then removed over 95 % of the remaining pollutnats and particles, resulting in less than 0.02 NTU turbidity, less than 0.5 mg/L chemical oxygen demand($COD_{Mn}$), less than 0.04 mg/L total nitrogen(T-N) and less than 0.01 mg/L total phosphorus(T-P). In particular, addition of an RO system could lead to markedly reduced high salt concentrations in tunnel wastewater, approaching almost zero. Thus, reclaimed water using the combined membrane system could satisfy current South Korean regulations concerning wastewater reuse(turbidity ${\leq}2.0$ NTU; T-N ${\leq}10mg/L$; T-P ${\leq}0.5mg/L$; Salinity ${\leq}250mg{\cdot}Cl/L$).

A Study on the Removal Effect of Bacteria and E. Coli. by Water Treatment Processes using Activated Carbon and Membrane (정수처리공정에 따른 일반세균과 대장균군의 제거에 관한 연구)

  • 조태석;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 1997
  • This study has been designed to check the removal effect of contaminated water by various water treatmemt processes using sediment filter, activated carbon, reverse osmosis membrane, ultra vilolet sterilizer and ultra filtration and then to analyze the change of pH, the concentration of chlorides, bacteria and E. coli. after 24 hours. pH has increased as much as 0.15-0.32 by activated carbon but decreased sharply by reverse osmosis treatment after 24 hours. The removal effect of chloride was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon. Ultra filtration process was effective for purify agricultural water containg bacteria and E.coli.

  • PDF

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

Design for seawater reverse osmosis plant using water blending in smart water grid (스마트 워터 그리드 내에서 워터 블렌딩을 고려한 역삼투 해수담수화 플랜트 설계)

  • Lee, Hongju;Park, Hanbai;Woo, Dal-Sik;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • Smart water grid is a water network with communication to save water and energy using various water resources. In smart water grid, water product from the various sources can be blended to be supplied to end-users. The product water blending was reported by literatures while feed water blending has been rarely reported so far. In this work, a commercial reverse osmosis (RO) system design software provided by a membrane manufacturer was used to elucidate the effect of feed water blending on the performance of seawater reverse osmosis (SWRO) plant. Fresh water from exisiting water resource was assumed to be blended to seawater to decrease salt concentration of the RO feed water. The feed water blending can simplify the RO system from double to single pass and decrease seawater intake amount, the unit prices of the RO system components including high pressure pump, and operation risk. Due to the increase in RO plant capacity with the feed water blending, however, the RO membrane area and total power consumption increase at higher water blending rates. Therefore, a specific benefit-cost analysis should be carried out to apply the feed water blending to SWRO plants.

Efficiency Estimation for Desalination System of Seawater Using Reverse Osmosis Membrane (역삼투압막 해수담수화 장치의 미네럴 분리 성능평가)

  • Moon, Deok-Soo;Jung, Dong-Ho;Kim, Hyeon-Ju;Shin, Phil-Kwon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2005
  • When external pressure higher than osmosis pressure is reversely derived into solution, its solvent is moved into the solution having lower concentration, which is called 'reverse osmosis'. We investigated the desalination application of deep ocean water using reverse osmosis pressure of $40-70\;kgf/cm^2$ We observed how to operational factor j like flow rate, water temperature and pressure have effect on efficiency of reverse osmosis membrane and salts rejection. Fluxes of reverse osmosis membrane are directly proportional to water temperature and pressure. However, salts rejection rates are positively correlated with pressure and inversely proportional to water temperature. Separation efficiencies of osmosis membrane for major elements such as $Mg^{2+},\;Ca^{+2},\;Na^+\;and\;K^+$ are as follows in a strong electrolysis solution like seawater; $Ca^{2+},\;Mg^{2+}>K^+>Na^+$. Rejection rates of $Mg^{2+}\;and\;Ca^{2+}$ that have high electric charges are over 99% and show positively correlation with water temperature. Rejection rates of $Na^+$ having low electric charge is observed to be 98%-99%, which rates is much lower than those of $2^+$ charged ions like $Ca^{2+}\;and\;Mg^{2+}$. Ion rejection rates of boron, B, are much low because boron is present il free state or gas phase in seawater. Boron concentration in desalination water is over criteria of Korean drinking water, 0.3 mg/L. However, we could satisfied with the criteria of drinking water under the operation condition like temperature $5^{\circ}C$ and pressure $70kgf/cm^2$, using the relationship that rejection rates of boron is proportional to pressure and is inversely proportional to water temperature

  • PDF

Accumulation of Food Wastes Liquid Fertilizer using Reverse Osmosis Membrane System (역삼투막을 이용한 음식폐기물 액비의 농축)

  • Cha, Gi-Cheol;Hwang, Myoung-Goo;Lee, Myung-Gyu;Tae, Min-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2002
  • A lab-scale Reverse Osmosis(RO) membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and performance of elimination at different trans-membrane pressure(TMP) in the liquid fertilizer accumulated system. Experimental setup was divided to three different TMP conditions. As a result of experiment, permeability of RO membrane was proportional to the increase of TMP and temperature. After experiment was completed, two types chemical cleaning(remove the organic foulant and inorganic foulant) was done, and recover rate of permeability was each 99.8, 99.7 and 99.7%, respectively. From this experimental data, membrane fouling could be determined that the most of it was recoverable in this system, and major reason of fouling was concentration polarization. Elimination rate of solute substance in the liquid fertilizer indicated very stable(above 99%), except ammonia nitrogen, and the most stable elimination rate was investigated at the highest TMP condition (Run 3).

Evaluation of calcium carbonate scale formation on system design of seawater reverse osmosis plants (해수담수화 시설의 시스템 구성에 따른 $CaCO_3$ 스케일 형성능 진단)

  • Kang, Nam-Wook;Choi, Yang-Hun;Lee, Hye-Ju;Lee, Seock-Heon;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.143-155
    • /
    • 2010
  • Fouling by inorganic scales needs to be prevented to effectively operate sea water reverse osmosis(SWRO) membrane systems. The extents of inorganic scaling with different array designs including one-pass, two-pass and several hybrid designs were evaluated using seawater from southern sea near the city of Chang-Won. The used methods for evaluation were Stiff and Davis Index(S&DSI) calculation and several laboratory experiments. The formation potential of inorganic scale fouling was quite great under the examined conditions, which was confirmed by the laboratory experimental results. The inorganic scale was not avoidable fouling if any anti-scaling measures were not applied. The RO showed decreased flux under the scale formation conditions. The increases in S&DSI from 1.43 to 5 made small decreases in flux, which indicated that formation of inorganic scales had more substantial effects on RO flux than amount of inorganic scales.

Landfill Leachate Treatment and Boron Removal by Reverse Osmosis (RO막을 이용한 매립지 침출수 처리 및 붕소 제거)

  • Jung, Soojung;Na, Sukhyun;Bae, Sangok;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.657-662
    • /
    • 2012
  • This study was carried out to evaluate the removal rate of organic and inorganic matters from landfill leachate using pre-treatment process as coagulation and limonite adsorption, and membrane process as RO (reverse osmosis) and NF(nanofiltration). By adding limonite adsorption as pre-treatment process, about 40% of organic matters in leachate was removed through pre-treatment process and 74.7% of boron was removed after RO process without pH adjustment. The rejection rate of boron in RO process mainly depends on the pH and increased at pH value of 10. RO process was performed as two stage system adjusting pH condtion to 7 and 10 in second RO stage for boron removal. Most (>90%) of TOC, Cl- and inorganic matters as Ca was rejected in first RO stage, the residue was rejected in second RO and the rejection rate was above 97%. Considering economic efficiency of operation cost, NF substituted for the first RO and total removal rate of TOC was above 90%. Through RO system toxicity to Daphnia in leachate was removed completely.

Pilot-Scale Simulation of Desalination Process Using Water Integrated Forward Osmosis System (물통합형 정삼투 시스템을 이용한 파일럿 스케일 담수 공정 모사)

  • Kim, Bongchul;Hong, Seungkwan;Choi, Juneseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • In these days, wastewater reclamation and seawater desalination play essential role in addressing the challenge of worldwide water scarcity. Particularly, reverse osmosis (RO) for seawater desalination process is commonly used due to less energy consumption than conventional thermodynamic systems. However, membrane fouling and electrical energy consumption during operation of RO system for seawater desalination haver continued to be a obstruction to its application. In this study, therefore, wastewater secondary effluent is used for osmotic dilution of seawater. Firstly, fouling behaviour of RO by simulating wastewater effluent in osmotic dilution process was measured and we calculated energy consumption of overall desalination process by theoretical equations and commercial program. Our results reveal that RO membrane fouling can be efficiently controlled by pre-treatment systems such as nano filtration (NF) or forward osmosis (FO) process. Especially FO system for osmotic dilution process is a non-pressurized membrane system and, therefore, the operating energy consumption of overall desalination system was the lowest. Moreover, fouling layer on FO membrane is comparatively weak and reversible enough to be disrupted by physical cleaning. Thus, RO system with low salinity feed water through FO process is possible as a less energy consuming desalination system with efficient membrane fouling control.

The Outlook for Forward Osmosis-Reverse Osmosis (FO-RO) Hybrid Desalination Market (해수담수화 시장의 전망(정삼투-역삼투 융합기술 측면에서))

  • Kim, Jakyum;Han, Jihee;Sohn, Jinsik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.521-532
    • /
    • 2016
  • Seawater desalination market after global economic crisis has been stalled due to the market uncertainties and decreased demand in desalination. It is important to review the status of the market and to estimate the appropriate share of Forward osmosis-Reverse Osmosis (FO-RO) hybrid desalination technology by figuring out the outlook of the desalination market. Main part of the desalination market will still be MENA (Middle East and North Africa) in the near future due to the fast population increase and high dependency of fossil fuel in the region. The market for FO-RO hybrid technology, however, might be smaller than the conventional SWRO desalination market anyway because of aesthetic issues from using wastewater as raw water and higher costs associated with capex. Therefore, it is essential to improve FO membrane performance and system operation technologies in order to make the hybrid technology attractive compared to the conventional SWRO technology.