• Title/Summary/Keyword: reverse micelles

Search Result 37, Processing Time 0.018 seconds

Solubilization of BSA into AOT Reverse Micelles Using the Phase-Transfer Method: Effects of pH and Salts (상 접촉법을 이용한 BSA의 AOT 역미셀으로 가용화: pH와 염의 영향)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Bovine serum albumin(BSA) was solubilized into the reverse micellar phase consisting of sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and isooctane using the phase transfer method. Of particular interest in this study were the effects of pH and the added salt type and concentration on the solubilization efficiency. When univalent or divalent salts such as KCl, NaCl, $MgCl_2$, or $CaCl_2$ were added to the aqueous phase at a concentration of 0.1 M, maximum solubilization efficiency was attained at a pH ranging from 5 to 7, depending on the added salt type. Increased salt concentration up to 1 M resulted in an increased solubilization efficiency for $CaCl_2$ and NaCl, while the addition of $MgCl_2$ beyond 0.1 M showed an anomalous trend. Further, it was noteworthy that too a large extent the protein precipitated in the interface between the organic and aqueous phases at lower pHs and lower salt concentrations. The size of the reverse micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, $W_0$. Irrespective of pH in the aqueous phase, the resulting value of $W_0$ was almost constant, eg., 20 for $MgCl_2$ . However, the value of $W_0$ decreased with increased salt concentration in the cases of KCl and $CaCl_2$.

  • PDF

A Study on Protein Separation with AOT-Isooctane Reverse Micellar System (AOT-Isooctane 역마이셀계를 이용한 단백질 분리에 관한 연구)

  • Rho, Young-Tae;Kim, Young-Sug;Cho, Hyung-Yong;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.542-548
    • /
    • 1989
  • For the selective separation of proteins, the solubilization and desolubilization of proteins in sodium-di-2-ethylhexyl sulfosuccinate (AOT)-isooctane reverse micellar system were investigated. Protein solubilization increased with increasing the concentration of AOT to 200 mM and then decreased above that concentration. Protein was solubilized into reverse micelles in the pH range below the isoelectric Point of each protein, pH 4-10 for lysozyme and pH 5-6 for trypsin and ${\alpha}-chymotrypsin$, Lysozyme, trypsin and ${\alpha}-chymotrypsin$ were efficiently extracted in the precence of KCl and NaCl while larger molecular weight proteins such as pepsin and BSA had high solubilization with $CaCl_2$. At higher ionic strength all proteins exhibited murk less tendency to solubilize and the increase of ionic strength resulted in the decrease of micelle size. Lysozyme was successfully back transfered at pH 12.2 and 1.0M KCl; trypsin at pH 12.6 and 0.5M KCl; and ${\alpha}-chymotrypsin$ at pH 6.7 and 0.5M KCl. In a test group separation experiments, complete separation of lysozyme from BSA could be obtained.

  • PDF

Effects of Temperature on the Rheology of Lecithin/CaCl2 Organogels (Lecithin/CaCl2 유기젤의 온도 영향에 대한 유변학적 연구)

  • Jung, Yeon-Geon;Lee, Hee-Young
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.244-247
    • /
    • 2018
  • Lecithin, a zwitterionic phospholipid, forms spherical reverse micelles in organic solvents such as decane. The addition of multivalent ions like calcium chloride to lecithin organosols induces the transformation of organosols into organogels. A variety of applications of such organogels were found in gelation of fuels, food processing and drug delivery. Here, we investigated the effect of temperature on their rheological properties. In particular, the organogels showed a distinct melting temperature (${\sim}95^{\circ}C$) and their elastic properties decreased with increasing temperature. This is maybe due to the fact that the electrostatic interaction between lecithin and calcium chloride could be weaken with increasing temperature.

Measurement of Metal-Film Removal Rate in a Microemulsion Using QCM

  • Ju, Min-Su;Koh, Moon-Sung;Kwon, Yoon-Ja;Park, Kwang-Heon;Kim, Hong-Doo;Kim, Hak-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • A set of Quartz Crystal Microbalances (QCM's) was used to observe the film removal characteristics of three different $CO_2-nitric$ acid microemulsions. QCM's electroplated with nickel or copper were used as specimens. F-AOT, NP-4 and the newly synthesized Proline Surfactant-1 were used as surfactants to create microemulsions. While the F-AOT microemulsion yielded a relatively low removal rate, that of the Proline Surfactant-1 completely removed the Cu metal film within a short period of time. The NP-4 microemulsion removed the metal surface. However, removal rate measurements per QCM were not possible due to the instability of the microemulsion when Cu ions were present in the nitric solution. The reaction kinetics and metal removal capabilities of microemulsions formed by the different surfactants are explained along with the characteristics of reverse micelles.

Removal of Sorbed Naphthalene from Soils Using Nonionic Surfactant (비이온성 계면활성제를 이용한 토양내 수착된 나프탈렌의 제거)

  • Ha, Dong-Hyun;Shin, Won-Sik;Oh, Sang-Hwa;Song, Dong-Ik;Ko, Seok-Oh
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.549-563
    • /
    • 2010
  • The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene ($k_1$) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction ($k_2$) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content ($f_{oc}$) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient ($K_D$) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient ($K_D$) of naphthalene increased with surfactant concentration. However, the $K_D$ decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles ($K_{mic}$) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.

Synergistic Effects of Catechin or Ascorbic Acid on Antioxidative Activities of Hexane and Methanol Extracts from Rosemary, Sage, Oregano, and Ginger (Rosemary, Sage, Oregano와 Ginger의 메탄올과 헥산 추출물의 항산화 작용에 대한 카테킨과 아스코르브산의 상승 효과)

  • Ahn, Chae-Kyung;Han, Daeseok;Rhee, Young-Kyung;Lee, Young-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.586-592
    • /
    • 2005
  • This study was peformed to investigate the synergistic effects of catechin and ascorbic acid on antioxidative activities of methanol and hexane extracts (500 ppm) from rosemary, sage, oregano, and ginger. Ascorbic acid (200 ppm) and (-)-catechin (200 ppm) could be solubilized in a rice bran oil via a reverse micelles using small amount of water and dioctyl sulfosuccinate as the sufactant. Methanol extracts from rosemary, sage, oregano, and ginger showed the synergistic effects by (-)-catechin. However, methanol extracts showed the synergistic effect by ascorbic acid except that of ginger. The synergistic effects of (-)-catechin on methanol extracts were higher than those of ascorbic acid. Hexane extracts of oregano and ginger showed the synergistic effects by (-)-catechin, and no synergistic effects by ascorbic acid. On the other hand, rosemary and sage showed the synergistic effects by ascorbic acid and no synergistic effects by (-)-catechin.

A Study on the Solubilization of $\alpha$-Chymotrypsin Using AOT Reverse Micelles; Effects of pH and salts (AOT 역미셀을 이용한 $\alpha$-chymotrypsin의 가용화에 대한 연구;pH와 염의 영향)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.664-669
    • /
    • 2000
  • Micellar aggregates are known to be useful for the selective isolation of biologically active materials such as amino acids, proteins, and enzymes from crude mixtures sparsely dispersed in water. In this study, the effects of pH, salt type and its concentration on the solubilization of $\alpha$-chymotrypsin into the organic micellar phase, which consisted of AOT (sodium 야(2-ethylhexy)sulfosuccinate) and iso-octane, were comprehensively examined. It was found that maximum extraction efficiency was attained at a pH below the isoelectric point of $\alpha$-chymotrypsin; at pH=5.0 for NaCl and KCl, and at pH=7.0 for $CaCl_2$and $MgCl_2$. In order to avoid complications stemming from the precipitationof protein at low pH interfaces, the protein concentrations in the organic and aqueous phases were directly measured. The size of the micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, W(sub)o. The resulting values of W(sub)o were nearly constant at 30 and 19 for NaCl and KCl, respectively, and were independent of pH. The addition of 1:2 salts like $MgCl_2$and $CaCl_2$ led to much lower, but a constant value of, W(sub)o than the 1:1 salts.

  • PDF