• Title/Summary/Keyword: reverse faulting

Search Result 24, Processing Time 0.024 seconds

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.

Paleoseismological Study and Evaluation of Maximum Earthquake Magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea (남한 남동부 양산단층대와 울산단층대의 고지진 연구와 최대 지진 규모 평가)

  • Kyung, Jai-Bok
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • The paleoseismological study in Korea has begun along the Yangsan fault zone (YFZ) and Ulsan fault zone (UFZ) since 1994. Some evidences related to late Quaternary movement are found at only some part of the YFZ, such as Pyonghae, Yuge, and Eonyang-Tongdosa areas. However, it is found along the most of the UFZ except the northen and southern ends of the fault. The dominant time span of faulting events along the YFZ and UFZ are quite different, and 500 ka to 200 ka and 300 ka to recent time, respectively. The dominant faulting senses of the YFZ and UFZ are right-lateral strike slip and reverse, respectively. These senses correspond well with the focal mechanism of recent occurring earthquakes along these two fault zones. If we evaluate the intensity of the activity of the YFZ from the average slip rate, which is 0.1~0.04 m/ka, it is comparable with the faults of higher C class in Japan. The slip rate of UFZ, which is 0.2~0.06 m/ka, is comparable with the faults of lower B to higher C class. Based on the relationship between maximum displacement and magnitude, the maximum earthquake magnitude is evaluated to be 6.8 and 7.0 in the YFZ and UFZ, respectively. An intensive studies are needed to clarify the problems such as segmentation of faults, return period, and geological evidences related to historical earthquakes.

Source Characteristics of the Recent Earthquakes for Seven Years in the Southwestern Region of the Korean Peninsula (최근 7년간 한반도 남서부 지역에서 발생한 지진의 진원 특성)

  • Jung, Mi Kyeong;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Focal mechanism solutions in the southwestern region of the Korean Peninsula ($34^{\circ}N-36^{\circ}N$, $126^{\circ}E-128^{\circ}E$) were obtained from the analysis of the recent 22 earthquakes ($M{\geq}2.0$) occurred from January, 2005 to March, 2011. The spatial differences between the epicenters recalculated by this study and those by KMA (Korea Meteorological Administration) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are less than $0.05^{\circ}$, indicating a small deviation. However, they become a little bit larger in the coastal area due to a biased arrangement of seismic stations. Redetermined depths of hypocenters show a difference less than 12.7 km by comparison with the depth data announced by KIGAM. Most epicenters in inland area are located closely to the lineaments. Fault plane solutions were obtained from the analysis of P and SH wave polarities, and SH/P amplitude ratios. They show strike-slip faulting or strike-slip faulting with reverse components dominantly. The P-axes trends are mainly ENE-WSW or E-W directions. The direction of fault plane and auxiliary plane with 'NNE-SSW and WNW-ESE' or 'NE-SW and NW-SE' are dominant and almost parallel to the general trends of lineaments in the study area.

THE STRUCTURE, STRATIGRAPHY AND PETROLEUM GEOLOGY OF THE MURZUK BASIN, SOUTHWEST LIBYA

  • JHO Jhoon Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.57-72
    • /
    • 2000
  • The Murzuk Basin covers an area in excess of $350,000{\cal}km^2$, and is one of several intra-cratonic sag basins located on the Saharan Platform of North Africa. Compared with some of these basins, the Murzuk Basin has a relatively simple structure and stratigraphy, probably as a result of it's location on a the East Saharan Craton. The basin contains a sedimentary fill which reaches a thickness of about $4,000{\cal}m$ in the basin centre. This fill can be divided into a predominantly marine Paleozoic section, and a continental Mesozoic section. The principal hydrocarbon play consists of a glacial-marine sandstone reservoir of Cambro-Ordovician age, sourced and sealed by overlying Silurian shales. The present day borders of the basin are defined by tectonic uplifts, each of multi-phase generation, and the present day basin geometry bears little relation to the more extensive Early Palaeozoic sedimentary basin within which the reservoir and source rocks were deposited. The key to the understanding of the Cambro-Ordovician play is the relative timing of oil generation compared to the Cretaceous and Tertiary inversion tectonics which influenced source burial depth, reactivated faults and reorganised migration pathways. At the present day only a limited area of the basin centre remains within the oil generating window. Modelling of the timing and distribution of source rock maturity uses input data from AFTA and fluid inclusion studies to define palaeo temperatures, shale velocity work to estimate maximum burial depth and source rock geochemistry to define kinetics and pseudo-Ro. Migration pathways are investigated through structural analysis. The majority of the discovered fields and identified exploration prospects in the Murzuk Basin involve traps associated with high angle reverse faults. Extensional faulting occurred in the Cambro-Ordovician and this was followed by repeated compressional movements during Late Silurian, Late Carboniferous, Mid Cretaceous and Tertiary, each associated with regional uplift and erosion.

  • PDF

A Paleoseismological Study of the Yangsan Fault-Analysis of Deformed Topography and Trench Survey (양산단층대의 고지진학적 연구 -변위지형 분석 및 트렌치 조사-)

  • Gyeong, Jae Bok;Lee, Gi Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.155-168
    • /
    • 1999
  • The paleoseismological importance of the Yangsan fault zone was examined by historical earthquake data, aerial photograph, and trench survey of the area. Occurrences of great earthquakes during the historical time indicate that the Yangsan and/or Ulsan fault have been active during the late Quaternary and generated historical events. Geomorphological evidences of the recent fault activity are clearly shown both in the northern segment (Yugye-ri, Tosung-ri and Naengsu-ri areas) and in the southern segment (Eonyang to Tongdosa areas) of the Yangsan fault. The main Yangsan fault is characterized by fault gouges and NNE-SSW lineaments. The reverse faulting in the Yugye-ri area generated about three-mater displacement of the lower terrace deposits. On the other hand, a major strike-slip movement with a minor component of 5-12 m vertical displacement was identified by the offset of the higher terrace surface in the Eonyang area.

  • PDF

Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field (한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석)

  • Cho, Hyeongseong;Kim, Min-Cheol;Kim, Hyeonjeong;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.75-103
    • /
    • 2014
  • The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stress field in and around Korean Peninsula. Using magnetic fabrics (AMS), we attempted to determine the slip senses of Jinti, Mohwa, Suseongji2, and Wangsan faults and then interpreted the fabric development process of fault gouge and the characteristics of stress field during the Quaternary. All the magnetic fabrics of the faults, except the Wangsan Fault, consistently indicate a dominant reverse-slip sense with weak strike-slip component. Most of the oblate fabrics are nearly parallel to the fault surface and the anisotropy degrees generally increase in proportion to the oblatenesses. These results suggest that the fabrics of the fault gouges resulted from a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. It is also interpreted that the pre-existing fabrics were overwhelmed and obliterated by the re-activated faulting. Paleostress field calculated from the fault slip data indicates an ENE-WNW compressive stress, which is in accord with those determined from previous fault tectonic analysis, focal mechanism solution, and hydraulic fracturing test in and around Korean Peninsula.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

An Analysis of the Fault Plane Solution and Intensity on the Iksan Earthquake of 22 December 2015 (2015년 12월 22일 발생한 익산지진의 단층면해와 진도 분석)

  • Kim, Jin-Mi;Kyung, Jai Bok;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.561-569
    • /
    • 2017
  • Fault plane solutions of the Iksan earthquake ($M_L=3.85$) and two aftershocks were obtained using the FOCMEC (FOCal MEChanism determination) program. The main event showed the characteristic of strike slip faulting with reverse component. It has the fault planes with NE-SW or NW-SE direction. This is similar to the fault characteristics of earthquake pattern in the inland area of the Korean Peninsula. In order to detect micro-earthquake events, continuous seismic waveform data of the thirteen seismic stations within a radius of 100km from epicenter were analyzed by PQLII program (PASSCAL, 2017) for the period from December 15, 2015 to January 22, 2016. The epicenters of nineteen micro-events were newly determined by Hypoinverse-2000 program. They are not concentrated along some lineaments or fault lines. The intensity of the Iksan earthquake was obtained by estimating the telephone inquiries, the degree of ground shaking or damage all around the southern peninsula. The instrumental intensity was also obtained using PGA (Peak Ground Acceleration) records. As a result, the maximum MM intensity was estimated to be V near the epicenter.